ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Analytical model and repetitive working characteristics of plasma synthetic jet
Received date: 2014-07-16
Revised date: 2014-10-08
Online published: 2014-11-15
Supported by
National Natural Science Foundation of China (51336011, 51207169, 51407197)
Plasma synthetic jet (PSJ) actuator has a broad application prospect in supersonic flow control due to its high actuation intensity and rapid response. Based on theories of heat transfer and gas dynamics, an analytical model of the whole working process of PSJ is established. This model takes the inertia of throat gas, heat transfer through the cavity and the refresh stage of actuator into consideration, and can predict the peak jet velocity occurrence time, refresh stage and the oscillation stage. Based on this model, the repetitive working process and characteristics of actuator with different energy deposition, actuation frequencies and orifice diameters, are researched. In the repetitive working process of actuator, there exist two typical working stages, transition stage and steady stage. Both the cavity temperature and peak jet velocity rise at the transition stage while vary periodically at the steady stage. With the energy deposition and actuation frequency increasing, the cavity wall temperature, as well as the peak jet velocity and time-averaged thrust, goes up. Limited by the safety working temperature of cavity material, a safe operation area (SOA) of actuator exists. The area of SOA is proportional to the jet orifice diameter. As the orifice diameter augments, both the peak jet velocity and jet duration time at the steady stage decrease.
Key words: plasma; synthetic jet; actuator; analytical model; flow control
ZONG Haohua , WU Yun , SONG Huimin , LI Yinghong , ZHANG Zhibo . Analytical model and repetitive working characteristics of plasma synthetic jet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1762 -1774 . DOI: 10.7527/S1000-6893.2014.0297
[1] Li Y H, Wu Y, Li J. Review of the investigation on plasma flow control in China[J]. International Journal of Flow Control, 2012, 4(1+2): 1-17.
[2] Zhao X H, Wu Y, Li Y H, et al. Separation structure and plasma flow control on highly loaded compressor cas-cade[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 208-219 (in Chinese). 赵小虎, 吴云, 李应红, 等. 高负荷压气机叶栅分离结构及其等离子体流动控制研究[J]. 航空学报, 2012, 33(2): 208-219.
[3] Wang J, Li Y H, Cheng B Q, et al. Experimental investigation on shock wave control by plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1374-1379 (in Chinese). 王键, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30(8): 1374-1379.
[4] Wang L, Luo Z B, Xia Z X, et al. Review of actuators for high speed active flow control[J]. Science China Technological Science, 2012, 55(8): 2225-2240.
[5] Grossman K R, Cybyk B Z, VanWie D M. Spark jet actuators for flow control, AIAA-2003-0057[R]. Reston: AIAA, 2003.
[6] Haack S J, Land H B, Cybyk B Z. Characterization of a high-speed flow control actuator using digital speckle tomography and PIV, AIAA-2008-3759[R]. Reston: AIAA, 2008.
[7] Haack S J, Taylor T M, Emhoff J, et al. Development of an analytical Sparkjet model, AIAA-2010-4979 [R]. Reston: AIAA, 2010.
[8] Popkin S H, Taylor T M, Cybyk B Z. Development and application of the SparkJet actuator for high-speed flow control[J]. Johns Hopkins APL Technical Digest, 2013, 32(1): 404-419.
[9] Narayanaswamy V, Rajia L, Clemens N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.
[10] Golbabaei-As M, Knighty D, Anderson K. SparkJet eciency, AIAA-2013-0928[R]. Reston: AIAA, 2013.
[11] Anderson K, Knight D. Plasma jet for flight control[J]. AIAA Journal, 2012, 50(9): 1855-1873.
[12] Belinger A, Hardy P, Barricau P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator [J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365201.
[13] Shin J. Characteristics of high speed electro-thermal jet activated by pulsed DC discharge [J]. Chinese Journal of Aeronautics, 2010, 23(5): 518-522.
[14] Jia M, Liang H, Song H M, et al. Characteristic of the spark discharge plasma jet driven by nanosecond pulses [J]. High Voltage Engineering, 2011, 37(6): 1493-1498 (in Chinese). 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流气动激励特性研究[J]. 高电压技术, 2011, 37(6): 1493-1498.
[15] Wang L, Luo Z B, Xia Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet actuator[J]. Acta Physica Sinica, 2013, 62(12): 125207 (in Chinese). 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207.
[16] Wang L, Xia Z X, Luo Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4): 879-882.
[17] Shan Y, Zhang J Z, Tan X M. Numerical study of flow characteristics and excitation parameters for the sparkjet actuator[J]. Journal of Aerospace Power, 2011, 26(3): 551-557 (in Chinese). 单勇, 张靖周, 谭晓茗. 火花型合成射流激励器流动特性及其激励参数数值研究[J]. 航空动力学报, 2011, 26(3): 551-557.
[18] Zhang J Z, Chang H P. Heat transfer[M]. Beijing: Science Press, 2009: 156-164 (in Chinese). 张靖周, 常海萍. 传热学[M]. 北京: 科学出版社, 2009: 156-164.
[19] Porter C O, Baughn J W, McLaughlin T E, et al. Temporal force measurements on an aerodynamic plasma actuator, AIAA-2006-0104[R]. Reston: AIAA, 2006.
/
〈 | 〉 |