ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Airborne SAR space-variant motion compensation algorithm based on numerical calculation
Received date: 2014-03-20
Revised date: 2014-11-03
Online published: 2014-11-15
Supported by
Aeronautical Science Foundation of China (20132007001);Defense Industrial Technology Development Program (B2520110008); NUAA Fundamental Research Funds (NS2013023)
Aimed at the imaging problems of high resolution wide swath (HRWS) airborne synthetic aperture radar (SAR), on the basis of conventional range migration algorithm with integrated two-step motion compensation, a new space-variant motion compensation algorithm based on numerical calculation is proposed for HRWS airborne SAR. This algorithm compensates the spatial-variant motion error in the two-dimensional wavenumber domain by transforming the coarsely focused image to block. The compensated phase includes azimuth phase error, range phase error and the coupling phase of range and azimuth. So the proposed algorithm can work well for the HRWS SAR data with complex flight path. Finally, The new proposed algorithm is compared with range migration algorithm with integrated two-step motion compensation by processing simulation data and real data. Real data processing results demonstrate that the algorithm can better compensate the spatial-variant motion error.
SONG Wei , ZHU Daiyin , YE Shaohua . Airborne SAR space-variant motion compensation algorithm based on numerical calculation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(2) : 625 -632 . DOI: 10.7527/S1000-6893.2014.0311
[1] Tang Y, Xing M D, Bao Z, The polar format imaging algorithm based on double chirp-Z transforms[J]. IEEE Geoscience and Remote Sensing Letters, 2008,5(4): 610-614.
[2] Zhu D Y, Ye S H, Zhu Z D. Polar format algorithm using chirp scaling for spotlight SAR image formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1433-1448.
[3] Raney R K, Runge H, Cumming I G, et al. Precision of SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786-799.
[4] Davidson G W, Cumming I D, Ito M R. A chirp scaling approach for processing squint model SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 121-133.
[5] Fornaro G. Trajectory deviations in airborne SAR: analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997-1009.
[6] Fornaro G, Franceschetti G, Perna S. Motion compensation errors: effects on the accuracy of airborne SAR images[J]. IEEE Transactions on Aerospace and Electronic System, 2005, 41(4): 1338-1352.
[7] Moreira A, Huang Y H. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029-1040.
[8] Reigber A, Alivizatos E, Potsis A, et al. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J]. IEE Proceedings-Radar Sonar Navigations, 2006, 153(3): 301-310.
[9] Mao X H, Zhu D Y, Zhu Z D, Space-variant motion compensation for airborne spotlight SAR under complicated flight path and rugged terrain[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 744-754 (in Chinese). 毛新华, 朱岱寅, 朱兆达. 复杂航迹和起伏地形条件下机载聚束SAR空变运动补偿[J].航空学报, 2012, 33(4): 744-754.
[10] Xing M D, Jiang X W, Wu R B, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870-2883.
[11] Minh P N, Ben A. Second order motion compensation for squinted spotlight synthetic aperture radar[C]//2013 Asia-pacific Conference on Synthetic Aperture Radar (APSAR). Piscataway, NJ: IEEE, 2013: 202-205.
[12] Berizzi F, Martorella M, Cacciamano A. Synthetic range profile focusing via contrast optimization[C]//IEEE International Geoscience and Remote Sensing Syposiam. Piscataway, NJ: IEEE, 2007: 3563-3566.
[13] Zhong X L, Xiang M S, Yue Y. Algorithm on the estimation of residual motion errors in airborne SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1311-1323.
[14] Potsis A, Reigber A, Mittermayer J, et al. Sub-aperture algorithm for motion compensation improvement in wide-beam SAR data processing[J]. IEEE Electronic Letters, 2001, 37(23): 1405-1406.
[15] Xue G Y, Zhou Z M, Lai T. An improved sub-aperture sub-patch motion compensation algorithm for UWB SAR[J]. Journal of Astronautics, 2008, 29(3): 1008-1014 (in Chinese). 薛国义, 周智敏, 赖涛. 宽波束角大测绘带UWB SAR 的子孔径子带运动补偿算法[J]. 宇航学报, 2008, 29(3):1008-1014.
/
〈 | 〉 |