ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A comprehensive analysis of aerodynamics for spacecraft re-entery Earth's atmosphere surroundings
Received date: 2014-08-10
Revised date: 2014-11-14
Online published: 2014-11-14
Supported by
National Key Basic Research and Development Program (2014CB744100); National Natural Science Foundation of China (11325212)
Aerodynamic characteristics of spacecraft re-entering Earth's atmosphere is the key factor to achieve the spaceflight velocity reduction to the landing speed and ensure the effective control of re-entry flight and the re-entry thermal protection with safety and reliability, which is one of the core basic techniques in the development of space vehicles. In this paper, for a class of aerodynamic configuration for the spacecraft re-entering from orbit, the researches and analyses including the aerodynamic action during spacecraft flight re-entering to the Earth, the gas flow surrounding around the spacecraft, and the dynamic and thermal effects from the interaction of air and spacecraft are put into practice on the basis of the typical re-entry control and thermal protection technologies. The common characteristics and the changing rules have been systematically presented including the spacecraft re-entry aerodynamic drag and re-entry deceleration, aerodynamic lift and re-entry trajectory control, trim of angle of attack and flight stability, as well as aerodynamic heating and thermal protection. The influence mechanisms of different re-entry aerodynamic characteristics and changing weather conditions have also been revealed on re-entry flight performance. The researching results provide the design references for engineering development of aerodynamic performance covering various flow regimes in the process of spacecraft re-entry flight.
FANG Fang , ZHOU Lu , LI Zhihui . A comprehensive analysis of aerodynamics for spacecraft re-entery Earth's atmosphere surroundings[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 24 -38 . DOI: 10.7527/S1000-6893.2014.0225
[1] Korzun A M, Dubos G F, Iwata C K, et al. A concept for the entry, descent, and landing of high-mass payloads at Mars[J]. Acta Astronautica, 2010, 66(7): 1146-1159.
[2] Hillje E R. Entry aerodynamics at Lunar return conditions, NASA TN-D-5399[R]. Washington, D.C.: NASA, 1969.
[3] Tancredi U, Accardo D, Grassi M, et al. Unmanned space vehicle technology demonstrator[J]. Acta Astronautica, 2007, 60: 186-197.
[4] Kinney D J. Development of the ORION crew exploration vehicle's aerothermal database using a combination of high fidelity CFD and engineering level methods, AIAA-2009-1100[R]. Reston: AIAA, 2009.
[5] Kawato H, Watanabe S, Yamamoto Y, et al. Aerodynamic performances of lifting-body configurations for a reentry vehicle[J]. Journal of Spacecraft and Rockets, 2005, 42(2): 232-239.
[6] Pardini C, Anselmo L, Moe K, et al. Drag and energy accommodation coefficients during sunspot maximum[J]. Advances in Space Research, 2010, 45(5): 638-650.
[7] Vallado D A, Finkleman D. A critical assessment of satellite drag and atmospheric density modeling[J]. Acta Astronautica, 2014, 95: 141-165.
[8] Martin A, Boyd I. Assessment of carbon-phenolic-in-air chemistry models for atmospheric re-entry, AIAA-2010-4656[R]. Reston: AIAA, 2010.
[9] Zhuang F G, Cui E J, Zhang H X. Some developments and future air space vehicle dynamics task[C]//China First Modern Aerodynamics and Thermodynamics Pneumatic Conference Proceedings: Book 1. Beijing: National Defense Industry Press, 2006: 1-12 (in Chinese). 庄逢甘, 崔尔杰, 张涵信. 未来空间飞行器的某些发展和空气动力学的任务[C]//中国第一届近代空气动力学与气动热力学会议论文集: 上册. 北京: 国防工业出版社, 2006: 1-12.
[10] Li Y L, Qi F R. Optimigation and implementation of China SHENZHOU spaceship's system and return technology scheme[J]. Spacecraft Recovery & Remote Sensing, 2012, 32(6): 1-13 (in Chinese). 李颐黎, 戚发韧. "神舟号"飞船总体与返回方案的优化与实施[J]. 航天返回与遥感, 2012, 32(6): 1-13.
[11] Liang J, Li Z H, Du B Q. Research on trim features of reentry capsule in hypersonic rarefied flow regime[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(3): 42-48 (in Chinese). 梁杰, 李志辉, 杜波强. 飞船返回舱再入稀薄流域配平特性研究[J]. 航天返回与遥感, 2013, 34(3): 42-48.
[12] Fang F. A comprehensive analysis of re-entry capsule's aerodynamic design for SHENZHOU spaceship[J]. Spacecraft Engineering, 2004(1): 124-131 (in Chinese). 方方. 神舟飞船返回舱气动设计综述[J]. 航天器工程, 2004(1): 124-131.
[13] Andrushchenko V A, Syzranova N G, Shevelev Y D. An estimate of the heat fluxes to the surface of blunt bodies moving at hypersonic velocity in the atmosphere[J]. Journal of Applied Mathematics and Mechanics, 2007, 71(5): 747-754.
[14] Shang J S, Surzhikov S T. Simulating stardust Earth reentry with radiation heat transfer[J]. Journal of Spacecraft and Rockets, 2011, 48(3): 385-396.
[15] Sarma G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3-4): 281-349.
[16] Bityurin V A, Bocharov A N. Study of catalytic effects at reentry vehicle-MHD heat flux mitigation in irradiative hypersonic flow around a blunt body with ablating carbon surface, AIAA-2014-1033[R]. Reston: AIAA, 2014.
[17] Zhao M X. Manned spacecraft aerodynamics[M]. Beijing: National Defense Industry Press, 2000: 86-90 (in Chinese). 赵梦熊. 载人飞船空气动力学[M]. 北京: 国防工业出版社, 2000: 86-90.
[18] Li Z H, Zhang H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry[J]. Journal of Computational Physics, 2009, 228(4): 1116-1138.
[19] Huang Z C. Missiles and space series: aerospace aerodynamics[M]. Beijing: China Aerospace Press, 1994: 50-62(in Chinese). 黄志澄. 导弹与航天丛书: 航天空气动力学[M]. 北京:宇航出版社, 1994: 50-62.
[20] Whitehead A, Jr. NASP aerodynamics, AIAA-1989-5013[R]. Reston: AIAA, 1989.
[21] Fang F. Manned spacecraft hypersonic flow field characteristics[C]//China-Russia Hypersonic Exchange Meeting. Beijing: China Great Wall Inductry Coperation, 2002 (in Chinese). 方方. 载人飞船航天器高超声速流场特性[C]//中俄高超声速交流会议. 北京: 中国长城工业有限公司, 2002.
[22] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6): 511-536.
[23] Fu D X. Missiles and space series: computational aerodynamics[M]. Beijing: China Aerospace Press, 1994: 75-82 (in Chinese). 傅德薰. 导弹与航天丛书:计算空气动力学[M]. 北京: 中国宇航出版社, 1994: 75-82.
[24] Jia Q Y, Fang F, Chen N, et al. Nonlinear aerodynamic resilience and aerocraft dynamic stability[J]. Acta Aerodynamica Sinica, 2003, 21(4): 446-448 (in Chinese). 贾区耀, 方方, 陈农, 等. 非线性气动恢复力与飞行器动稳定性[J]. 空气动力学学报, 2003, 21(4): 446-448.
[25] Zhang H X, Yuan X X, Xie Y F, et al. Study of the dynamic stability of a pitching unfinned reentry capsule[J]. Acta Aerodynamica Sinica, 2004, 22(2): 130-134 (in Chinese). 张涵信, 袁先旭, 谢昱飞, 等. 不带稳定翼飞船返回舱俯仰动稳定性研究[J]. 空气动力学学报, 2004, 22(2): 130-134.
[26] Schaaf S A, Chamber P L. "Fundamentals of gas dynamics" H articles "rarefied gas flows"[M]. Xu H F, translated. Beijing: Science Press, 1988: 31-37 (in Chinese). 沙夫S A, 钱伯P L. 《气体动力学基本原理》H篇"稀薄气体的流动"[M]. 徐华舫, 译. 北京: 科学出版社, 1988: 31-37.
[27] Li Z H, Wu Z Y. DSCM simulation of hypersonic rarefied flow past Apollo-MC[J]. Acta Aerodynamica Sinica, 1996, 14(2): 230-233 (in Chinese). 李志辉, 吴振宇. 阿波罗指令舱稀薄气体动力学特征的蒙特卡罗数值模拟[J]. 空气动力学学报, 1996, 14(2): 230-233.
[28] Liu W, Zhao H Y. Exploration of return capsule dynamic stability interdisciplinary research methods [C]//Seventh National Conference on Fluid Mechanics. Guilin: National Computational Fluid Dynamics Conference Organizing Committee, 2012: CSTM 2012-B03-0197 (in Chinese). 刘伟, 赵海洋. 返回舱动态稳定性多学科交叉研究方法探索[C]//第七届全国流体力学学术会议. 桂林: 全国计算流体力学会议组委会, 2012: CSTM 2012-B03-0197.
[29] Reynier P. Survey of convective blockage for planetary entries[J]. Acta Astronautica, 2013, 83: 175-195.
/
〈 | 〉 |