Electronics and Control

Method of spacecraft hovering formation design and control

  • RAO Yinrui ,
  • HAN Chao ,
  • YIN Jianfeng ,
  • CHEN Huan
Expand
  • 1. School of Astronautics, Beihang University, Beijing 100191, China;
    2. Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China

Received date: 2014-08-06

  Revised date: 2014-11-02

  Online published: 2014-11-06

Abstract

To satisfy the need of the hovering technology in the spacecraft on-orbit servicing mission, a study on spacecraft hovering formation design and control is carried out. By designing the mission spacecraft orbit, the absolute orbit relationship between the target spacecraft and the mission spacecraft is presented and the mechanism of the hovering orbit is illustrated. According to the relative trajectory of the mission spacecraft relative to the target spacecraft, and using the well-defined relative orbit elements, the configuration of the hovering orbit in the target spacecraft orbital plane and out of the target spacecraft orbital plane are described. An interval impulse control strategy for hovering formation is derived and the mission spacecraft can be remained at a specified position to the target spacecraft for a long time. Furthermore, the effect of the hovering formation on the required velocity impulse is analyzed. The proposed method and conclusions are validated by simulation through some typical examples. A process of making the mission spacecraft transfer between two hovering orbits is presented. The study improves the design and control methods of spacecraft hovering orbit, and indicates the feasibility of the designed hovering orbit. The theory of spacecraft hovering dynamics and control is improved and the results could provide some references for the designers of the engineering missions.

Cite this article

RAO Yinrui , HAN Chao , YIN Jianfeng , CHEN Huan . Method of spacecraft hovering formation design and control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2361 -2371 . DOI: 10.7527/S1000-6893.2014.0310

References

[1] Waltz D M. On-orbit servicing of space systems[M]. Florida: Krieger Publishing Company, 1993: 193-227.
[2] Motaghedi P. On-orbit performance of the orbital express capture system[C]//Proceedings of Society of Photo-Optical Instrumentation Engineers. Bellingham, WA: SPIE, 2008: 69580E-1-12.
[3] Shoemaker J, Wright M, Sivapiragasam S. Orbital express space operations architecture program[C]//Proceedings of the 17th Annual AISS/USU Conference on Small Satel. Reston: AIAA, 2003: 1-9.
[4] D'Amico S, Gill E, Montenbruck O. Relative orbit control design for the PRISMA formation flying mission, AIAA-2006-6067[R]. Reston: AIAA, 2006.
[5] Bodin P, Larsson R, Nillsson F, et al. PRISMA: an in-orbit test bed for guidance, navigation, and control experiments[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 615-623.
[6] Yin J F. Study of elliptical relative motion between two close spacecrafts[D]. Beijing: Beihang University, 2013 (in Chinese). 殷建丰. 椭圆轨道航天器近距离相对运动问题研究[D]. 北京: 北京航空航天大学, 2013.
[7] Sawai S, Scheeres D J, Broschart S B. Control of hovering spacecraft using altimetry[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 786-795.
[8] Lu E T, Love S G. Gravitational tractor for towing asteroids[J]. Nature, 2005, 438(7065): 177-178.
[9] Gehler M, Ober-Blobaum S, Dachwald B, et al. Optimal control of gravity tractor spacecraft near arbitrarily shaped asteroids[C]//Proceedings of the 1st IAA Planetary Defense Conference: Protecting Earth from Asteroids, 2009: 1-8.
[10] Lin L X, Li K. Orbit dynamics and control of satellites hovering over space target[J]. Chinese Space Science and Technology, 2008, 2(1): 9-13 (in Chinese). 林来兴, 黎康. 卫星对空间目标悬停的轨道动力学与控制方法研究[J]. 中国空间科学技术, 2008, 2(1): 9-13.
[11] Wang G B, Zheng W, Meng Y H, et al. Research on hovering control scheme to non-circular orbit[J]. Sci China Tech Sci, 2011, 41(11): 1505-1511 (in Chinese). 王功波, 郑伟, 孟云鹤, 等. 相对非圆轨道的悬停控制方法研究[J]. 中国科学: 技术科学, 2011, 41(11): 1505-1511.
[12] Hope A S, Trask A J. Pulsed-thrust method for hover formation flying[C]//Proceedings of AAS/AIAA Astrodynamics Specialists Conference. San Diego, CA: Univelt. Inc., 2008: 1-11.
[13] Lovell T A, Tollefson M V. Calculation of impulsive hovering trajectories via relative orbit elements[J]. Advances in the Astronautical Sciences, 2006, 123(3): 2533-2548.
[14] Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences, 1960, 27(9): 653-658.
[15] Yin J F, Han C. Impulsive hovering formation based on relative orbit elements[C]//Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting. San Diego, CA: Univelt. Inc., 2013: 1-16.
[16] Alfriend K T, Vadali S R, Gurfil P, et al. Spacecraft formation flying dynamics, control and navigation[M]. London: Butterworth-Heinemann, 2010: 13-16.
[17] D'Amico S, Montenbruck O. Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation[J]. Journal of Guidance, Control, and Dynamcis, 2006, 29(3): 554-563.
[18] Xiao Y L. Theory of flight dynamics for spacecraft[M]. Beijing: China Astronautic Publishing House, 1995: 118-123 (in Chinese). 肖业伦. 航天器飞行动力学原理[M]. 北京: 宇航出版社, 1995: 118-123.
[19] Han C, Yin J F. Study on satellite relative motion in eccentric orbit using relative orbit elements[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2244-2258(in Chinese). 韩潮, 殷建丰. 基于相对轨道要素的椭圆轨道卫星相对运动研究[J]. 航空学报, 2011, 32(12): 2244-2258.
[20] Battin R H, Vaughan R M. An elegant lambert algorithm[J]. Journal of Guidance, Control and Dynamics, 1984, 7(6): 662-670.
[21] He Q. Research of guidance method for spacecraft rendezvous and docking mission[D]. Beijing: Beihang University, 2010 (in Chinese). 贺泉. 航天器交会对接导引方法研究[D]. 北京: 北京航空航天大学, 2010.
Outlines

/