Engine

Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion

  • YANG Yue ,
  • YOU Jiaping ,
  • SUN Mingbo
Expand
  • 1. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China;
    2. Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China;
    3. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

Received date: 2014-07-25

  Revised date: 2014-10-31

  Online published: 2014-10-31

Supported by

National Thousand Young Talent Program (5th batch), Organization Department of CPC, China

Abstract

The high-fidelity numerical simulation is considered as a useful approach to understand the turbulence-chemistry interactions in supersonic turbulent combustion and it can be used as a predictive model for engine design in engineering applications. In numerical simulations, large-eddy simulation and Reynolds averaged Navier-Stokes simulation require to model the effects of the motion and chemical reactions at small scales on large scale motions. The existing turbulence-chemistry interaction models can be classified into two types: the flamelet-like model and the probability density function model. Both types have their own advantages and weaknesses in different applications. In addition, most of the existing models are based on low-Mach-number combustion, while the supersonic combustion involves more complex processes such as rapid mixing, local extinctions/re-ignitions and shock waves, which pose significant challenges to the modeling of turbulence-chemistry interactions.

Cite this article

YANG Yue , YOU Jiaping , SUN Mingbo . Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 261 -273 . DOI: 10.7527/S1000-6893.2014.0239

References

[1] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.

[2] Yu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471 (in Chinese). 俞刚, 范学军. 超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5): 449-471.

[3] Wang Z G, Sun M B. Modeling and large eddy simulation of supersonic turbulent flow and combustion[M]. Beijing: Science Press, 2013: 3-4 (in Chinese). 王振国, 孙明波. 超声速湍流流动、燃烧的建模与大涡模拟[M]. 北京: 科学出版社, 2013: 3-4.

[4] Pope S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000: 335-343.

[5] Pitsch H. Large-eddy simulation of turbulent combustion[J]. Annual Review of Fluid Mechanics, 2006, 38(1): 453-482.

[6] Lu T F, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations[J]. Progress in Energy and Combustion Science, 2009, 35(2): 192-215.

[7] Yoo C S, Richardson E S, Chen J H, et al. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1619-1627.

[8] Lu S Q, Fan J R, Luo K. High-fidelity resolution of the characteristic structures of a supersonic hydrogen jet flame with heated coflow air[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3528-3539.

[9] Pope S B. Small scales, many species and the manifold challenges of turbulent combustion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1-31.

[10] Yang Y, Wang H, Pope S B, et al. Large-eddy simulation/PDF modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1241-1249.

[11] Peters N. Turbulent combustion[M]. Cambridge: Cambridge University Press, 2000: 146-156.

[12] Pierce C D, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97.

[13] Klimenko A Y, Bilger R W. Conditional moment closure for turbulent combustion[J]. Progress in Energy and Combustion Science, 1999, 25(6): 595-687.

[14] Pope S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985, 11(2): 119-192.

[15] Kerstein A R. A linear-eddy model of turbulent scalar transport and mixing[J]. Combustion Science and Technology, 1988, 60(4-6): 391-421.

[16] Kerstein A R. One-dimensional turbulence: model formulation and application to homogeneous turbulence, sheer flows, and buoyant stratified flows[J]. Journal of Fluid Mechanics, 1999, 392: 277-334.

[17] Klimenko A Y, Pope S B. The modeling of turbulent reactive flows based on multiple mapping conditioning[J]. Physics of Fluids, 2003, 15(7): 1907-1925.

[18] Cleary M J, Kronenburg A. Multiple mapping conditioning for extinction and reignition in turbulent diffusion flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1497-1505.

[19] Waidmann W, Alff F, Bhhm M, et al. Supersonic combustion of hydrogen/air in a scramjet combustion chamber[J]. Space Technology, 1995, 15(6): 421-429.

[20] Laurence S J, Schramm J M, Karl S, et al. An experimental investigation of steady and unsteady combustion phenomena in the Hyshot II combustor, AIAA-2011-2310[R]. Reston: AIAA, 2011.

[21] Larsson J. Large eddy simulation of the Hyshot II scramjet combustor using a supersonic flamelet model, AIAA-2012-4261[R]. Reston: AIAA, 2012.

[22] Micka D J, Driscoll J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404.

[23] Gamba M, Miller V A, Hanson R K, et al. Ignition and flame structure in a compact inlet/scramjet combustor model, AIAA-2011-2366[R]. Reston: AIAA, 2011.

[24] Gamba M, Miller V A, Hanson R K, et al. Combustion characteristics of an inlet/supersonic combustor model, AIAA-2012-0612[R]. Reston: AIAA, 2012.

[25] Gamba M, Terrapon V E, Pitsch H, et al. Assessment of the combustion characteristics of hydrogen transverse jets in supersonic crossflow[R]. Washington, D.C.: NASA, 2011: 259-272.

[26] Luo K H. Combustion effects on turbulence in a partially premixed supersonic diffusion flame[J]. Combustion and Flame, 1999, 119(4): 417-435.

[27] Fureby C. LES for supersonic combustion, AIAA-2012-5979[R]. Reston: AIAA, 2012.

[28] Williams F A. Recent advances in theoretical description of turbulent diffusion flames[C]//Turbulent Mixing in Nonreactive and Reactive Flows. New York: Springer, 1975: 189-208.

[29] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339.

[30] Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model: a priori study and presumed PDF closure[J]. Combustion and Flame, 2008, 155(1): 70-89.

[31] Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model: application in LES of Sandia flames D and E[J]. Combustion and Flame, 2008, 155(1): 90-107.

[32] Mauss F, Keller D, Peters N. A Lagrangian simulation of flamelet extinction and reignition in turbulent jet diffusion flames[J]. Proceedings of the Combustion Institute, 1991, 23(1): 693-698.

[33] Pitsch H, Barths H, Peters N. Three-dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach[J]. SAE Transactions, 1996, 105(4): 2010-2024.

[34] Pitsch H, Chen M, Peters N. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames[J]. Proceedings of the Combustion Institute, 1998, 27(1): 1057-1064.

[35] Consul R, Oliva A C D. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames[J]. Combustion and Flame, 2008, 153(1): 71-83.

[36] Hasse C, Peters N. A two mixture fraction flamelet model applied to split injections in a di diesel engine[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2755-2762.

[37] Boileau M, Staffelbach G, Cuenot B, et al. LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame, 2008, 154(1): 2-22.

[38] Mueller M E, Pitsch H. Large eddy simulation of soot evolution in an aircraft combustor[J]. Physics of Fluids, 2013, 25(11): 110812.

[39] Knudsen E, Pitsch H. A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion[J]. Combustion and Flame, 2009, 156(3): 678-696.

[40] Knudsen E, Pitsch H. Capabilities and limitations of multi-regime flamelet combustion models[J]. Combustion and Flame, 2012, 159(1): 242-264.

[41] Domingo P, Vervisch L, Veynante D. Auto-ignition and flame propagation effects in LES of burned gases diluted turbulent combustion[C]//Proceedings of the Summer Program. 2006: 337.

[42] Yang Y, Pope S B, Chen J H. Empirical low-dimensional manifolds in composition space[J]. Combustion and Flame, 2013, 160(10): 1967-1980.

[43] Williams F A. Progress in knowledge of flamelet structure and extinction[J]. Progress in Energy and Combustion Science, 2000, 26(4): 657-682.

[44] Sun M B, Fan Z Q, Liang J H, et al. Evaluation of partially premixed flamelet approach in supersonic combustion[J]. Advances in Mechanics, 2010, 46(6): 634-644 (in Chinese). 孙明波, 范周琴, 梁剑寒, 等. 部分预混超声速燃烧火焰面模式研究综述[J]. 力学进展, 2010, 46(6): 634-644.

[45] Sabel'nikov V, Deshaies B, Figueira L F, et al. Revisited flamelet model for non-premixed combustion in supersonic turbulent flows[J]. Combustion and Flame, 1998, 114(3): 577-584.

[46] Zheng L L, Bray K N C. The application of new combustion and turbulence models to H2-air non-premixed supersonic combustion[J]. Combustion and Flame, 1994, 99(2): 440-448.

[47] Oevermann M. Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling[J]. Aerospace Science and Technology, 2000, 4(7): 463-480.

[48] Gao Z X, Lee C H. A flamelet model for turbulent diffusion combustion in supersonic flow[J]. Science China Technological Sciences, 2010, 53(12): 3379-3388.

[49] Berglund M, Fureby C. LES of supersonic combustion in a scramjet engine model[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2497-2504.

[50] Hou L Y, Niu D S, Ren Z Y. Partially premixed flamelet modeling in a hydrogen fueled supersonic combustor[J]. International Journal of Hydrogen Energy, 2014, 39(17): 9497-9504.

[51] Sun M B. Investigation of flows and mechanisms of stabilization of a flameholding cavity in supersonic flow[D]. Changsha: National University of Defence Technology, 2008 (in Chinese). 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究[D]. 长沙: 国防科学技术大学, 2008.

[52] Terrapon V E, Ham F, Pitsch H, et al. A flamelet-based model for supersonic combustion[R]. Washington, D.C.: NASA, 2009: 47-58.

[53] Fureby C, Chapuis M, Karl S, et al. CFD analysis of the HyShot II scramjet combustor[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2399-2405.

[54] Pecnik R, Terrapon V E, Pitsch H, et al. Reynolds-averaged Navier-Stokes simulations of the Hyshot II scramjet[J]. AIAA Journal, 2012, 50(8): 1717-1732.

[55] Saghafian A, Terrapon V E, Pitsch H, et al. An efficient flamelet-based combustion model for supersonic flows, AIAA-2011-2267[R]. Reston: AIAA, 2011.

[56] Hiremath V, Lantz S R, Pope S B, et al. Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion[J]. Combustion and Flame, 2012, 159(10): 3096-3109.

[57] Ren Z Y, Pope S B. An investigation of the performance of turbulent mixing models[J]. Combustion and Flame, 2004, 136(1): 208-216.

[58] Pope S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J]. Combustion Theory Modelling, 1997, 1(1): 41-63.

[59] Zeman O. Dilatation dissipation: the concept and application in modeling compressible mixing layers[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2): 178-188.

[60] Sarkar S, Erlebacher G, Kreiss H, et al. The analysis and modeling of dilatational terms in compressible turbulence[J]. Journal of Fluid Mechanics, 1991, 227: 473-493.

[61] Eifler P, Kollmann W. PDF prediction of supersonic hydrogen flames, AIAA-1993-0448[R]. Reston: AIAA, 1993.

[62] Delarue B J, Pope S B. Application of PDF methods to compressible turbulent flows[J]. Physics of Fluids, 1997, 9(9): 2704-2715.

[63] Delarue B J, Pope S B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods[J]. Physics of Fluids, 1998, 10(2): 487-498.

[64] Mbus H, Gerlinger P, Bruggemann D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion[J]. Combustion and Flame, 2003, 132(1): 3-24.

[65] Fox R O. Computational models for turbulent reacting flows[M]. Cambridge: Cambridge University Press, 2003: 265-266.

[66] Wang H B, Qin N, Wang M Z G, et al. A hybrid LES (large eddy simulation)/assumed sub-grid PDF (probability density function) model for supersonic turbulent combustion[J]. Science China Technological Sciences, 2011, 54(10): 2694-2707.

[67] Frankel S H, Hassan H A, Drummond J P. A hybrid Reynolds averaged/PDF closure model for supersonic turbulent combustion, AIAA-1990-1573[R]. Reston: AIAA, 1990.

[68] Forster H, Sattelmayer T. Validity of an assumed PDF combustion model for scramjet applications, AIAA-2008-2585[R]. Reston: AIAA, 2008.

[69] Baurle R A, Girimaji S S. Assumed PDF turbulence-chemistry closure with temperature composition correlations[J]. Combustion and Flame, 2003, 134(1): 131-148.

[70] Tang Q, Zhao W, Fox R O, et al. Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics[J]. Combustion Theory and Modelling, 2007, 11(6): 889-907.

[71] Valio L. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow[J]. Flow, Turbulence and Combustion, 1998, 60(2): 157-172.

[72] Sabel'nikov V, Soulard O. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars[J]. Physical Review E, 2005, 72(1): 016301.

[73] Koo H, Donde P, Raman V. A quadrature-based LES/transported probability density function approach for modeling supersonic combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2203-2210.

[74] Donde P, Koo H, Raman V. A multivariate quadrature based moment method for LES based modeling of supersonic combustion[J]. Journal of Computational Physics, 2012, 231(17): 5805-5821.

[75] Koo H, Donde P, Raman V. LES-based Eulerian PDF approach for the simulation of scramjet combustors[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2093-2100.

Outlines

/