ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Hypersonic vehicle attitude control based on new fast terminal sliding mode
Received date: 2014-08-18
Revised date: 2014-10-16
Online published: 2014-10-27
Supported by
National Natural Science Foundation of China (61473226); Astronautics Science and Technology Innovation Foundation (N14XW0001)
To accelerate the convergence of a terminal sliding mode and avoid the singularity of the sliding mode controller, a new nonsingular fast terminal sliding mode, whose convergence speed is faster than that of the terminal sliding mode with double power functions at any point, is proposed according to an analysis of the cause of the singularity of the designed controller. The formula of convergence time is drived. Thereafter, a simpler nonsingular terminal sliding mode is designed. The nonsingular sliding mode controller is designed for the inner loop and outer loop of a hypersonic vehicle with an order filter by applying the new terminal sliding mode. In order to improve the control effect, two nonlinear observers are used to approximate the compound disturbances. The system including the inner loop and outer loop is proven to be stable in the finite time by means of the Lyapunov stability theorem. Finally, the performances and robustness are assessed through a hypersonic vehicle with model parameter perturbations.
LIU Yuchao , GUO Jianguo , ZHOU Jun , WANG Guoqing . Hypersonic vehicle attitude control based on new fast terminal sliding mode[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2372 -2380 . DOI: 10.7527/S1000-6893.2014.0290
[1] Huang L, Duan Z S, Yang J Y. Challenges of control science in near space hypersonic aircrafts[J]. Control Theory and Application, 2011, 28(10): 1496-1506 (in Chinese). 黄琳, 段志胜, 杨剑影. 近空间高超声速飞行器对控制科学的挑战[J]. 控制理论与应用, 2011, 28(10): 1496-1506.
[2] Dong C, Hou Y, Zhang Y, et al. Model reference adaptive switching control of a linearized hypersonic flight vehicles model with actuator saturation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2010, 224(3): 289-303.
[3] Utkin V I. Sliding modes in control optimization[M]. Heidelberg: Springer, 1992.
[4] Yu X, Man Z. Model reference adaptive control systems with terminal sliding modes[J]. International Journal of Control, 1996, 64(6): 1165-1176.
[5] Man Z, Yu X. Terminal sliding mode control of mimo linear systems[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1997, 44(11): 1065-1070.
[6] Park K B, Tsuji T. Terminal sliding mode control of second-order nonlinear uncertain system[J]. International Journal of Robust and Nonlinear Control, 1999, 9(11): 769-780.
[7] Hu J B, Shi M H, Zhuang K Y, et al. Terminal sliding mode control for a class of nonlinear system[J]. Control Theory and Application, 2005, 22(3): 495-498 (in Chinese). 胡剑波, 时满宏, 庄开宇, 等. 一类非线性系统的termainal滑模控制[J]. 控制理论与应用, 2005, 22(3): 495-498.
[8] Yu X H, Man Z H. Fast terminal sliding mode control design dynamic systems[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2002, 49(2): 261-264.
[9] Yong F, Yu X H, Man Z H. Nonsingular terminal sliding mode control of rigid manipulator[J]. Automatic, 2002, 38(12): 2159-2167.
[10] Zou A M, Kumar K D, H Z G, et al. Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011,41(4): 950-962.
[11] Zhang J, Jiang C S. Robust adaptive terminal sliding mode control for high dynamic near space vehicle based on estimation of complex disturbance[J]. Journal of Astronautics, 2009, 30(5): 1896-1901 (in Chinese). 张军, 姜长生. 基于复杂干扰估计的高速NSV鲁棒自适应模糊termainal滑模控制[J]. 宇航学报, 2009, 30(5): 1896-1901.
[12] Hang Z, Zong Q, Tian B L, et al. Hypersonic vehicle attitude control using terminal sliding mode control[J]. Control and Decision, 2013, 28(2): 259-263 (in Chinese). 杭钊, 宗群, 田柏苓, 等. 基于terminal滑模的高超声速飞行器姿态控制[J]. 控制与决策, 2013, 28(2): 259-263.
[13] Song Z K, Li H X, Sun K B. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique[J]. ISA Transactions, 2014, 53(1): 117-124.
[14] Pu M, Wu Q X, Jiang C S, et al. New fast terminal sliding mode and its application to near space vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1283-1291 (in Chinese). 蒲明, 吴庆宪, 姜长生, 等. 新型快速termainal滑模及其在近空间飞行器上的应用[J]. 航空学报, 2011, 32(7): 1283-1291.
[15] Wang G X, Zhou Z M. Ordinary differential equation[M]. Beijing: Higher Education Press, 2006 (in Chinese). 王高雄, 周之铭. 常微分方程[M]. 北京: 高等教育出版社, 2006.
[16] Man Z, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. IEEE Transactions on Automatic Control, 1994,39(12): 2464-2469.
[17] Keshmiri S, Colgren R, Mirmirani M. Six DoF nonlinear equations of motion for a generic hypersonic vehicle, AIAA-2007-6626[R]. Reston: AIAA, 2007.
[18] Zhou F Q, Wang Y, Zhou J, et al. Design of variable structure controller for dynamic vehicle coupling system[J]. Journal of Astronautics, 2011, 32(1): 66-71 (in Chinese). 周凤岐, 王延, 周军, 等. 高超声速飞行器耦合系统变结构控制设计[J]. 宇航学报, 2011, 32(1): 66-71.
[19] Chen X S, Yang J, Li S H, et al. Disturbance observer based multi-variable control of ball mill grinding circuits [J]. Journal of Process Control, 2009, 19(7): 1205-1213.
[20] Zhang T Y, Zhou J, Guo J G. Design of predictive controller for hypersonic vehicles based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 215-222 (in Chinese). 张天翼, 周军, 郭建国. 基于干扰观测器的高速飞行器预测控制律设计[J]. 航空学报, 2014, 35(1): 215-222.
/
〈 | 〉 |