Experiments and Numerical Simulations

Problems of numerical simulation of high-temperature gas flow fields for hypersonic vehicles

  • LI Haiyan ,
  • TANG Zhigong ,
  • YANG Yanguang ,
  • SHI Anhua ,
  • LUO Wanqing
Expand
  • China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-08-28

  Revised date: 2014-10-17

  Online published: 2014-10-20

Abstract

With the development of research on optical radiative characteristics and electromagnetic scattering of hypersonic vehicle, more and more attention has been paid to the properties of high-temperature gas flow fields. A large amount of aerodynamic phenomena are involved in the study of the properties of high-temperature gas flow fields such as aeroheating, ablation, radiation, combustion, chemical reaction, turbulence, etc., which makes the numerical simulation approach face all kinds of challenges. Based on the computational fluid dynamic (CFD) and direct simulation Monte-Carlo (DSMC) methods, the problems associated with chemical and physical model, method stability and computational efficiency are considered when solving external flow, wake and engine exhaust plume for general hypersonic vehicles at different trajectories, thermal protection and flow regime conditions. The corresponding future research areas are proposed involving numerical technique and chemical and physical model, which will effectively improve numerical effects and increase predicting precision. As a result, the available basic data needed for investigating the influence of flow properties on optical radiative characteristics and electromagnetic scattering of hypersonic vehicle can be supplied.

Cite this article

LI Haiyan , TANG Zhigong , YANG Yanguang , SHI Anhua , LUO Wanqing . Problems of numerical simulation of high-temperature gas flow fields for hypersonic vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 176 -191 . DOI: 10.7527/S1000-6893.2014.0235

References

[1] Le J L, Gao T S, Zeng X J. Reentry physics[M]. Beijing: National Defense Industry Press, 2005: 1-6 (in Chinese). 乐嘉陵, 高铁锁, 曾学军. 再入物理[M]. 北京: 国防工业出版社, 2005: 1-6.

[2] Hirschel E H. Viscous effects[J]. Space Course, 1991, 1(1): 12-35.

[3] Surzhikov S T. Spectral emissivity of shock waves in Martian and Titan atmospheres, AIAA-2010-4527[R]. Reston: AIAA, 2010.

[4] Walker S, Tang M, Morris S, et al. Falcon HTV-3X-a reusable hypersonic test bed, AIAA-2008-2544[R]. Reston: AIAA, 2008.

[5] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program, AIAA-2008-2540[R]. Reston: AIAA, 2008.

[6] Park C. Nonequilibrium hypersonic aerothermodynamics[M]. New York: John Wiley and Sons, 1990: 178-184, 255-281.

[7] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K, NASA TP-1232[R]. Washington, D.C.: NASA, 1990.

[8] Park C. Stagnation-point radiation for Apollo[J]. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 349-357.

[9] Dong S K, Tan H P, He Z H, et al. Numerical simulation of visible and infrared radiation properties of hypersonic reentry bodies[J]. Journal of Infrared and Millimeter Waves, 2002, 21(3): 180-184 (in Chinese). 董士奎, 谈和平, 贺志宏, 等. 高超声速再入体可见、红外辐射特性数值模拟[J]. 红外与毫米波学报, 2002, 21(3): 180-184.

[10] Ouyang S W, Xie Z Q. High temperature nonequilibrium air flow [M]. Beijing: National Defense Industry Press, 2001: 200-213 (in Chinese). 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京:国防工业出版社, 2001: 200-213.

[11] Blottner F G. Prediction of electron density in the boundary-layer on entry vehicles with ablation, NASA SP-252[R]. Washington, D.C.: NASA, 1970.

[12] Mather D E, Pasqual J M, Sillence J P. Radio frequency(RF) blackout during hypersonic reentry, AIAA-2005-3443[R]. Reston: AIAA, 2005.

[13] Olynick D, Chen Y K, Tauber M. Wake flow calculation with radiation and ablation for the stardust sample return capsule, AIAA-1997-2477[R]. Reston: AIAA, 1997.

[14] Gao T S, Dong W Z, Zhang Q Y. The computation and analysis for the hypersonic flow over reentry vehicles with ablation [J]. Acta Aaerodynamica Sinica, 2006, 24(1): 41-46 (in Chinese). 高铁锁, 董维中, 张巧芸. 高超声速再入体烧蚀流场计算分析[J]. 空气动力学学报, 2006, 24(1): 41-46.

[15] Gimelshein S F, Levin D A. Ultraviolet radiation modeling from high-altitude plumes and comparison with mir data[J]. AIAA Journal, 2000, 38(12): 2344-2352.

[16] Feng S J, Nie W S, Song F H, et al. Evaluation research of infrared radiation characteristics of solid rocket motor exhaust plume[J]. Journal of Solid Rocket Technology, 2009, 32(2): 183-187 (in Chinese). 丰松江, 聂万胜, 宋丰华, 等. 固体火箭发动机尾喷焰红外辐射特性预估研究[J].固体火箭技术, 2009, 32(2): 183-187.

[17] Kinefuchi K, Funaki I, Ogawa H, et al. Investigation of microwave attenuation by solid rocket exhausts, AIAA-2009-1386[R]. Reston: AIAA, 2009.

[18] An D M, Liu Q Y. Effects of flight condition on microwave attenuation characteristics of rocket plume[J]. Journal of Solid Rocket Technology, 2000, 23(3): 11-15(in Chinese). 安东梅, 刘青云. 飞行环境对火箭喷焰微波衰减特性的影响[J]. 固体火箭技术, 2000, 23(3): 11-15.

[19] Lee R H C, Chang I S, Stewart G E. Studies of plasma properties in rocket plumes, SD-TR-82-44[R]. Los Angeles: Calif Aerospace Corporation, 1982.

[20] Smoot L D, Underwood D L, Schroeder R G. Prediction of microwave attenuation characteristics of rocket exhausts, AIAA-1965-0181[R]. Reston: AIAA, 1965.

[21] Gupta R N, Lee K P, Moss J N, et al. Viscous shock-layer solutions with coupled radiation and ablation for earth entry [J]. Journal of Spacecraft and Rockets, 1992, 29(2): 173-181.

[22] Molvik G A. A set of strongly coupled upwind algorithms for computing flows in chemical nonequilibrium, AIAA-1989-0199[R]. Reston: AIAA, 1989.

[23] Bhutta B A, Lewis C H. A new technique for low-to-high altitude predictions of ablative hypersonic flowfields, AIAA-1991-0392[R]. Reston: AIAA, 1991.

[24] Boyd I D. Computation of hypersonic flows using the direct simulation Monte Carlo method, AIAA-2013-2557[R]. Reston: AIAA, 2013.

[25] Olynick D R, Taylor J C, Hassan H A. Comparisons between DSMC and the Naiver-Stokes equations for reentry flows, AIAA-1993-2810[R]. Reston: AIAA, 1993.

[26] Hong W H, Sun H S, Liu L Y. An analysis of chemical nonequilibrium of ablation for a reentry body[J]. Missiles and Space Vehicles, 1994, 208(2): 36-44 (in Chinese). 洪文虎, 孙洪森, 刘连元. 有升力再入飞行器烧蚀化学非平衡研究[J]. 导弹与航天运载技术, 1994, 208(2): 36-44.

[27] Scott C D. Wall catalytic recombination and boundary conditions in nonequilibrium hypersonic flows-with application[J]. Advances in Hypersonics, 1992, 2(1): 176-250.

[28] Park C. Chemical-kinetic parameters of hyperbolic earth entry, AIAA-2000-0210[R]. Reston: AIAA, 2000.

[29] Wang J, Pei H L, Wang N Z. Research on ablation for crew return vehicle based on re-entry trajectory and aerodynamic heating environment[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 80-89 (in Chinese). 王俊, 裴海龙, 王乃洲. 基于再入轨迹和气动热环境的返回舱烧蚀研究[J]. 航空学报, 2014, 35(1): 80-89.

[30] Mertens J D. Computational model of nitrogen vibrational relaxation by electron collisions[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 204-209.

[31] Capitelli M, Colonna G, Giordano D, et al. High-temperature thermodynamic properties of mars atmosphere components, AIAA-2004-2378[R]. Reston: AIAA, 2004.

[32] Fertig M, Dohr A, Fruhauf H H. Transport coefficients for high-temperature nonequilibirum air flows[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(2): 148-156.

[33] Laricchiuta A, Bruno D, Catalfamo C, et al. Transport properties of high-temperature Mars-atmosphere components, AIAA-2007-4043[R]. Reston: AIAA, 2007.

[34] Lee E S, Park C, Chang K S. Shock-tube determination of CN formation rate in a CO-N2 mixture, AIAA-2007-0810[R]. Reston: AIAA, 2007.

[35] Gokcen T. N2-CH4-Ar chemical kinetic model for simulations of titan atmospheric entry[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(1): 9-18.

[36] Keenan J A, Candler G V. Simulation of ablation in earth atmospheric entry, AIAA-1993-2789[R]. Reston: AIAA, 1993.

[37] Candler G V. Computation of thermo-chemical nonequilibrium Martian atmospheric entry flows, AIAA-1990-1695[R]. Reston: AIAA, 1990.

[38] Dong W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D]. Beijing: Beihang University, 1996 (in Chinese). 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996.

[39] Hash D, Olejniczak J, Wright M. FIRE II calculations for hypersonic nonequilibrium aerothermodynamics code verification: DPLR, LAURA, and US3D, AIAA-2007-0605[R]. Reston: AIAA, 2007.

[40] Mazaheri A, Gnoffo P A, Johnston C O, et al. LAURA users manual: 5.5-65135, NASA/TM-2013-217800[R]. Washington, D.C.: NASA, 2013.

[41] Liu J. Experimental and numerical research on thermo-chemical nonequilibrium flow with radiation phenomenon[D]. Changsha: National University of Defense Technology, 2004 (in Chinese). 柳军. 热化学非平衡流及其辐射现象的试验和数值计算研究[D]. 长沙: 国防科学技术大学, 2004.

[42] Li H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D]. Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese). 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳:中国空气动力研究与发展中心, 2007.

[43] Wang J F, Yu Q H, Wu Y Z. Distributed parallel algorithms for hypersonic thermo-chemical non-equilibrium flows[J]. Journal of University of Science and Technology of China, 2008, 38(5): 529-533 (in Chinese). 王江峰, 余奇华, 伍贻兆. 高超声速热化学非平衡绕流分布式并行计算[J]. 中国科学技术大学学报, 2008, 38(5): 529-533.

[44] Candler G V, Maccormack R W. The computation of hypersonic ionized flows in chemical and thermal nonequilibrium, AIAA-1988-0511[R]. Reston: AIAA, 1988.

[45] Dong W Z, Gao T S, Ding M S. Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows[J]. Acta Aerodynamica Sinica, 2007, 25(1): 1-6 (in Chinese). 董维中, 高铁锁, 丁明松. 高超声速非平衡流场多个振动温度模型的数值研究[J]. 空气动力学学报, 2007, 25(1): 1-6.

[46] Miler J H, Tannehill J C, Lawrence S L, et al. Development of an upwind PNS code for thermo-chemical nonequilibrium flows, AIAA-1995-2009[R]. Reston: AIAA, 1995.

[47] Candler G V. Nonequilibrium processes in hypervelocity flows: an analysis of carbon ablation models, AIAA-2012-0724[R]. Reston: AIAA, 2012.

[48] Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 287-302 (in Chinese). 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展 [J]. 航空学报, 2014, 35(2): 287-302.

[49] Gupta R N, Moss J N, Price J M. Assessment of thermo-chemical nonequilibrium and slip effects for orbital re-entry experiment[J]. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 562-569.

[50] Li H Y, Luo W Q, Shi W B. An application of Newton-type iteration method on the control equations of ablation boundary[J]. Acta Aerodynamica Sinica, 2010, 28(4): 456-461 (in Chinese). 李海燕, 罗万清, 石卫波. Newton型迭代法在求解烧蚀边界条件控制方程中的应用[J]. 空气动力学学报, 2010, 28(4): 456-461.

[51] Gnoffo P A, Johnston C O. A boundary condition relaxation algorithm for strongly coupled ablating flows including shape change, AIAA-2011-3370[R]. Reston: AIAA, 2011.

[52] Parsons N, Zhu T, Levin D A, et al. Development of DSMC chemistry models for Nitrogen collisions using accurate theoretical calculations, AIAA-2014-1213[R]. Reston: AIAA, 2014.

[53] Wu Q F, Chen W F. Direct simulation Monte-Carlo method for thermo-chemical nonequilibrium flow of high temperature and rarefied gas[M]. Changsha: National University of Defense Technology Press, 1999: 184-263 (in Chinese). 吴其芬, 陈伟芳. 高温稀薄气体热化学非平衡流动的DSMC方法[M]. 长沙:国防科学技术大学出版社, 1999: 184-263.

[54] Bird G A. Molecular gas dynamics and the direct simulation of gas flows [M]. Oxford: Oxford University Press, 1994: 123-147.

[55] Wang B G, Li X D, Liu S Y. DSMC algorithm and heat transfer analysis of high temperature and high velocity rarefied gas flow[J]. Journal of Aerospace Power, 2010, 25(6): 1203-1220 (in Chinese). 王保国, 李学东, 刘淑艳. 高温高速稀薄流的DSMC算法与流场传热分析[J]. 航空动力学报, 2010, 25(6): 1203-1220.

[56] Haas B L, Boyd I D. Models of direct Monte Carlo simulation of coupled vibration dissociation[J]. Physics of Fluid A, 1993, 5(2): 478-489.

[57] Boyd I D, Bose D, Candler G V. Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations physics of fluids[J]. Physics of Fluids, 1997, 9(1): 1162-1170.

[58] Bird G A. The Q-K model for gas-phase chemical reaction rates[J]. Physics of Fluid, 2014, 23(106101): 1-13.

[59] Collins F G, Knox E C. Determination of wall boundary conditions for high-speed-ratio direct simulation Monte Carlo calculations[J]. Journal of Spacecraft and Rockets, 1994, 31(6): 965-970.

[60] Bartel T J, Johannes J E, Furlani T R. Trace chemistry modeling with DSMC in chemically reacting plasmas, AIAA-1998-2753[R]. Reston: AIAA, 1998.

[61] Ozawa T, Fedosov D, Levin D A, et al. Use of quasi-classical trajectory methods in the modeling of OH production mechanisms in DSMC, AIAA-2004-0336[R]. Reston: AIAA, 2004.

[62] Li Z, Sohn I, Levin D A. DSMC modeling of vibration-translational relaxation of molecular nitrogen in hypersonic reentry flows, AIAA-2011-3131[R]. Reston: AIAA, 2011.

[63] Bartel T J, Johannes J E, Furlani T R. Trace chemistry modeling with DSMC in chemically reacting plasmas, AIAA-1998-2753[R]. Reston: AIAA, 1998.

[64] Gallis M A, Bond R B, Torczynski J R. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows, AIAA-2010-4499[R]. Reston: AIAA, 2010.

[65] Liechty D S. Treatment of electronic energy level transition and ionization following the particle-based chemistry model, AIAA-2010-3379[R]. Reston: AIAA, 2010.

[66] Boyd I D. Computation of hypersonic flows using the direct simulation Monte Carlo method, AIAA-2013-2557[R]. Reston: AIAA, 2013.

[67] Burt J M. Monte Carlo simulation of solid rocket exhaust plumes at high altitude[D]. Michigan: Philosophy in the University of Michigan, 2006.

[68] Papp J L, Wilmoth R G, Chartrand C C, et al. Simulation of high-altitude plume flow fields using a hybrid continuum CFD/DSMC approach, AIAA-2006-4412[R]. Reston: AIAA, 2006.

[69] Schwartzentruber T E, Scalabrin L C, Boyd I D. Hybrid particle-continuum simulations of low Knudsen number hypersonic flows, AIAA-2007-3892[R]. Reston: AIAA, 2007.

[70] Zade A Q, Renksizbulut M, Friedman J. Slip/jump boundary conditions for rarefied reacting/non-reacting multi-component gaseous flows [J]. International Journal of Heat and Mass Transfer, 2008, 5(1): 5063-5071.

[71] Cai G B, Wang H Y, Zhuang F G. Coupled numerical simulation with Navier-Stokes and DSMC on vacuum plume[J]. Journal of Propulsion on Technology, 1998, 19(4): 57-61 (in Chinese). 蔡国飙, 王慧玉, 庄逢甘. 真空羽流场的Navier-Stokes和DSMC耦合数值模拟[J]. 推进技术, 1998, 19(4): 57-61.

[72] Li Z H, Li Z H, Li H Y, et al. Research on CFD/DSMC hybrid numerical method in rarefied flows [J]. Acta Aerodynamica Sinica, 2013, 31(3): 282-287 (in Chinese). 李中华, 李志辉, 李海燕, 等. 过渡流区N-S/DSMC耦合计算研究[J]. 空气动力学学报, 2013, 31(3): 282-287.

[73] Zhong J, Ozawa T, Levin D A. Modeling of hypersonic wake flows of slender and blunt bodies, AIAA-2007-0612[R]. Reston: AIAA, 2007.

[74] Cheng X L, Dong Y H, Li T L. Computational and experimental studies of ablation effect on electronic characteristic in vehicle wake[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 796-800 (in Chinese). 程晓丽, 董永晖, 李廷林. 模型烧蚀对尾迹电子特性影响的计算和实验研究[J]. 航空学报, 2007, 28(4): 796-800.

[75] Dang A L, Kehtarnavaz H, Coats D E. The use of Richardson extrapolation in PNS solutions of rocket nozzle flow, AIAA-1989-2895[R]. Reston: AIAA, 1989.

[76] Kawasaki A H, Coats D E, Berker D R. A two-phase, two-dimensional reacting parabolized Navier-Stokes flow solver for the prediction of solid rocket motor flowfields, AIAA-1992-3600[R]. Reston: AIAA, 1992.

[77] Rodionov A V. New space-marching technique for exhaust plume simulation, AIAA-2000-3390[R]. Reston: AIAA, 2000.

[78] He X Z, Le J L, Song W Y. PNS-NS combined method for solving two-dimensional powered airbreathing hypersonic vehicle’s flowfield [J]. Journal of Aerospace Power, 2009, 24(12): 2741-2747 (in Chinese). 贺旭照, 乐嘉陵, 宋文艳. 二维带动力吸气式高超声速飞行器绕流的PNS-NS混合求解[J]. 航空动力学报, 2009, 24(12): 2741-2747.

[79] Yu Z F, Bu S Q, Shi A H, et al. Research on the scaling law for the RCS of underdense turbulent wake of hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(1): 57-61 (in Chinese). 于哲峰, 部绍清, 石安华, 等. 高超声速飞行体亚密湍流尾迹RCS特性的相似规律研究[J]. 空气动力学学报, 2014, 32(1): 57-61.

[80] Bian Y G, Xu L G. Aerothermodynamics[M]. Hefei: Press of University of Science and Technology of China, 1997: 346-366 (in Chinese). 卞荫贵, 徐立功. 气动热力学[M]. 合肥:中国科学技术大学出版社, 1997: 346-366.

[81] Kang L, Li C X, Liu J Y, et al. The meaning and development status of compressible turbulent flow for high Mach number[J]. Winged Missiles Journal, 2012, 7(1): 78-82 (in Chinese). 康磊, 李椿萱, 刘景源, 等. 高马赫数可压缩湍流研究的意义及发展现状[J].飞航导弹, 2012, 7(1): 78-82.

[82] Spalart P R. Trends in turbulence treatments, AIAA-2000-2306[R]. Reston: AIAA, 2000.

[83] Shin T H, Liu N S. Ensemble averaged probability density function(APDF) for compressible turbulent reacting flows, NASA/TM-2012-217677[R]. Washington, D.C.: NASA, 2012.

[84] Fiolitakis A, Ess P R, Gerlinger P, et al. Non-premixed non-piloted hydrogen-air flame with differential diffusion, AIAA-2012-0179[R]. Reston: AIAA, 2012.

[85] Comparison of turbulence models for nozzle-afterbody flows with propulsive jets, NASA TP-3592[R]. Washington, D.C.: NASA, 1996.

[86] Denison M R, Lamb J J, Bjorndahl W D, et al. Solid rocket exhaust in the stratosphere: plume diffusion and chemical reactions, AIAA-1992-3399[R]. Reston: AIAA, 1992.

[87] Hughes R C, Landrum D B. Computational investigation of electron production in solid rocket plumes, AIAA-1993-2454[R]. Reston: AIAA, 1993.

[88] Ma B K, Guo L X, Chang H F. Light scattering characteristics of Al2O3 tail plume plasmas for a spacecraft[J]. Nuclear Fusion and Plasma Physics, 2014, 34(1): 90-96(in Chinese). 马保科, 郭立新, 常红芳. 航天器尾喷焰等离子体Al2O3粒子的光散射特性[J]. 核聚变与等离子体物理, 2014, 34(1):90-96.

[89] Reed R A, Calia V S. Review of aluminum oxide rocket exhaust particles, AIAA-1993-2819[R]. Reston: AIAA, 1993.

[90] Jeenu R, Pinumalla K, Deepak D. Size distribution of particles in combustion products of aluminized composite propellant[J]. Journal of Propulsion and Power, 2010, 26(4): 715-723.

[91] Pelosi A D, Gany A. Modeling the combustion of a solid fuel containing a liquid oxidizer droplet[J]. Journal of Propulsion and Power, 2012, 38(6): 1379-1388.

[92] Jin R B, Xiang H J. A new method of numerical simulation of combustion aluminium droplet in exhaust for SRM [J]. Journal of Rocket Propulsion, 2010, 36(6): 25-29(in Chinese). 靳瑞斌, 向红军. 一种新的模拟固体火箭发动机射流铝颗粒燃烧的方法[J]. 火箭推进, 2010, 36(6): 25-29.

[93] Yang S H. Numerical study of hydrocarbon fueled scramjets[D]. Mingyang: China Aerodynamics Research and Development Center, 2006 (in Chinese). 杨顺华. 碳氢燃料超燃冲压发动机数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2006.

[94] Jiang X Y, Li Z H, Wu J L. Application of gas-kinetic unified algorithm covering various flow regimes for rotational non-equilibrium effect [J]. Chinese Journal of Computational Physics, 2014, 31(4): 403-411 (in Chinese). 蒋新宇, 李志辉, 吴俊林. 气体运动论统一算法在跨流域转动非平衡效应模拟中的应用[J]. 计算物理, 2014, 31(4): 403-411.

[95] Li Q B, Fu S. High-order accurate gas-kinetic scheme and turbulence simulation[J]. Science China Physics, Mechanics & Astronomy, 2014, 44(1): 278-284(in Chinese). 李启兵, 符松. 高精度气体动理学格式与湍流模拟[J]. 中国科学: 物理学 力学 天文学, 2014, 44(1): 278-284.

[96] Zhao W W, Chen W F. Formulation of a new set of simplified conventional Burnett equations for computational of rarefied hypersonic flows, AIAA-2014-3208[R]. Reston: AIAA, 2014.

Outlines

/