Material Engineering and Mechanical Manufacturing

Analysis and compensation for absolute positioning error of robot in automatic drilling

  • DONG Huiyue ,
  • ZHOU Huafei ,
  • YIN Fucheng
Expand
  • 1. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Shaanxi Aircraft Industry (Group) Company Ltd., Hanzhong 723215, China

Received date: 2014-07-14

  Revised date: 2014-10-07

  Online published: 2014-10-20

Supported by

National Natural Science Foundation of China (51275463); Fundamental Research Funds for the Central Universities (2014FZA4003)

Abstract

Due to the relatively low absolute positioning accuracy of robot, the required accuracy of drilled holes could not be directly met without compensation during robot automatic drilling. In order to improve the accuracy, the absolute positioning error of robot is researched. Firstly,this article discusses the error sources and generating processes. And through theoretical analysis and relevant experiment, we found that the absolute positioning error would have different influences on translation component and rotation component of calibration result of robot base coordinate system. Secondly, in order to compensate for the coordinate converted error caused by calibration inaccuracy of base coordinate system, a new method based on constructing error Coons surface function is proposed from the standpoint of aircraft surface construction principle. And the validity of the new method is experimentally verified through robot automatic drilling. Results show that the average error of holes is 0.205 mm and the maximum error is less than 0.343 mm, which must be controlled under 0.5 mm. The required accuracy of robot automatic drilling is realized.

Cite this article

DONG Huiyue , ZHOU Huafei , YIN Fucheng . Analysis and compensation for absolute positioning error of robot in automatic drilling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2475 -2484 . DOI: 10.7527/S1000-6893.2014.0273

References

[1] Fan Y Q. Overview of digital assembly technology for aircraft[J]. Aeronautical Manufacturing Technology, 2006(10): 44-48 (in Chinese). 范玉青. 飞机数字化装配技术综述[J]. 航空制造技术, 2006(10): 44-48.
[2] Qu W W, Hou P H, Yang G J, et al. Study on the stiffness performance for robot machining system[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2823-2832 (in Chinese). 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12): 2823-2832.
[3] He S Q. Digital assembly technologies and equipments of the jumbo aircraft[M]. Beijing: Aviation Industry Press, 2013: 264-272 (in Chinese). 何胜强. 大型飞机数字化装配技术与装备[M]. 北京: 航空工业出版社, 2013: 264-272.
[4] Sulzer J, Kovac I. Enhancement of positioning accuracy of industrial robots with a reconfigurable fine positioning module[J]. Precision Engineering, 2010, 34(2): 201-217.
[5] Du G G, Zhang P. Online robot calibration based on vision measurement[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(6): 484-492.
[6] Lu T F, Lin G. An online relative position and orientation error calibration methodology for work cell robot operations[J]. Robotics and Computer-Integrated Manufacturing, 1997, 13(2): 89-99.
[7] Dolinsky J U, Jenkinson I D, Colquhoun G J. Application of genetic programming to the calibration of industrial robots[J]. Computers in Industry, 2007, 58(3): 255-264.
[8] Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1): 236-245.
[9] Zhu W D, Qu W W, Cao L H. An off-line programming system for robotic drilling in aerospace manufacturing [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9): 2535-2545.
[10] Yang G L, Kong L F, Wang J. A new calibration approach to hand-eye relation of manipulator[J]. Robot, 2006, 28(4): 400-405 (in Chinese). 杨广林, 孔令富, 王洁. 一种新的机器人手眼关系标定方法[J]. 机器人, 2006, 28(4): 400-405.
[11] Ding X L, Zhou L L, Zhou J. Pose error analysis of robot in three dimensions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 241-245 (in Chinese). 丁希仑, 周乐来, 周军. 机器人的空间位姿误差分析方法[J]. 北京航空航天大学学报, 2009, 35(2): 241- 245.
[12] Liu M Y, Huang J X, Ye Q G. A general method of calculating accuracy and its application to mechanical structure and system[J]. Robot, 1992, 14(4): 18-24 (in Chinese). 刘密英, 黄家贤, 叶琪根. 机械结构与系统精度通用计算法及其应用[J]. 机器人, 1992, 14(4): 18-24.
[13] Ren Y J, Zhu J G, Yang X Y, et al. Method of robot calibration based on laser tracker[J]. Chinese Journal of Mechanical Engineering, 2007, 43(9): 195-200 (in Chinese). 任永杰, 邾继贵, 杨学友, 等. 利用激光跟踪仪对机器人进行标定的方法[J]. 机械工程学报, 2007, 43(9): 195-200.
[14] Gan Z X, Tang Q. Visual sensing and its applications: integration of laser sensors to industrial robots[M]. Hangzhou: Zhejiang University Press, 2011: 93-188.
[15] Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
[16] Tian W, Zhou W X, Zhou W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500.
[17] Zhu X X. Free curves and surfaces modeling technology. Beijing: Science Press, 2000: 57-59 (in Chinese). 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 57-59.
[18] Qu W W, Dong H Y, Ke Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960 (in Chinese). 曲巍葳, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10): 1951-1960.
[19] Wikipedia. Euler angles[EB/OL]. (2011-10-23). [2014-09-17]. http://en.wikipedia.org/wiki/TaitBryan_angles#Tait. E2.80.93Bryan_angles.

Outlines

/