Engine

Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle

  • WU Yingchuan ,
  • HE Yuanyuan ,
  • HE Wei ,
  • LE Jialing
Expand
  • Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-07-25

  Revised date: 2014-10-13

  Online published: 2014-10-14

Supported by

National Natural Science Foundation of China (90716017, 90916012, 91216303)

Abstract

Air-breathing hypersonic vehicle is highly integrated making its design challenging. All vehicle parts and functions interact including aerodynamics, propulsion, control, structure, tank and thermal protection, especially for airframe and scramjet engine coupling. The lower wall of the aircraft forebody and afterbody is either compression part of the engine inlet or expansion part of the engine nozzle and it produces lift and pitching moment as well as thrust. The strong coupling of the airframe and engine has direct influence to the thrust, lift, drag, pitching moment, aerodynamic heating, airframe cooling, stability and control characteristics of the vehicle. The research developments of airframe-propulsion integration technology are introduced and the related works of China Aerodynamics Research & Development Center (CARDC) are emphasized. These works included osculating curved cone waverider inlet design, double shockwave axissymetric flow field-based inward turning inlet design, airframe-propulsion integrated vehicle tests in pulsed combustion heated hypersonic high-temperature wind tunnels and hypersonic large-scale parallel numerical simulation platform (AHL3D). The related fundamental researches of hypersonic shock-boundary layer interaction, compressible turbulent transition of flow separation mechanism and its control, scramjet combustion study on flow mechanism and other related basic issues are introduced. The urgent need of efficient high-precision calculation method is emphasized.

Cite this article

WU Yingchuan , HE Yuanyuan , HE Wei , LE Jialing . Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 245 -260 . DOI: 10.7527/S1000-6893.2014.0238

References

[1] Tank M H. National Aero-Space Plane (NASP) Program, N1991-28214[R]. Washington, D. C.: NASA Space Transportation Propulsion Technology Symposium, 1991, 2: 383-407.

[2] Foelsche R O, Leylegian J C, Betti A A. Progress on the development of a free flight atmospheric scramjet test technique, AIAA-2005-3297[R]. Reston: AIAA, 2005.

[3] Peebles C. Road to Mach 10: lessons learned from the X-43A flight research program[M]. Reston: Library of Flight Series, AIAA, 2008: 36-78.

[4] Shelly F, Charles M, Kenneth R, et al. Hyper-X Mach 7 scramjet design, ground test and flight results, AIAA-2005-3322[R]. Reston: AIAA, 2005.

[5] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program, AIAA-2008-2540[R]. Reston: AIAA, 2008.

[6] Walker S H, Sherk J, Shell D. The DARPA/AF Falcon Program: the hypersonic technology vehicle #2 (HTV-2) flight demonstration phase, AIAA-2008-2539[R]. Reston: AIAA, 2008.

[7] Liu T L. Hypersonic technology flight test program in Russia (I)[J]. Aerodynamic Missile Journal, 2000(4): 23-30 (in Chinese). 刘桐林. 俄罗斯高超声速技术飞行试验计划(一)[J]. 飞航导弹, 2000(4): 23-30.

[8] Duveau P, Hallard R, Novelli P, et al. Aerodynamic performance analysis of the hypersonic airbreathing vehicle Japhar[C]//ISABE 1999. Florence: ISABE Congress, 1999.

[9] Neuenhahn T, Olivier H. Development of the HyShot stability demonstrator, AIAA-2006-2960[R]. Reston: AIAA, 2006.

[10] Steelant J. Sustained hypersonic flight in Europe: technology drivers for LAPCAT II, AIAA-2009-7240[R]. Reston: AIAA, 2009.

[11] Chen Y Y, Ye L, Su X X. Current situation of air-breathing hypersonic vehicle abroad[J]. Aerodynamic Missile Journal, 2008(12): 25-32 (in Chinese). 陈英硕, 叶蕾, 苏鑫鑫. 国外吸气式高超声速飞行器发展现状[J].飞航导弹, 2008(12): 25-32.

[12] Rogers R C, Capriotti D P, Guy R W. Experimental supersonic combustion research at NASA langley, AIAA-1998-2506[R]. Reston: AIAA, 1998.

[13] Engelund W C, Holland S D, Cockrell C E, Jr. Aerodynamic database development for the hyper-X airframe-integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rocket, 2001, 38(6): 803-810.

[14] Yi J, Xiao H, Shang X S. Aerodynamic performance research of two integrated hypersonic configurations[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 305-311 (in Chinese). 易军, 肖洪, 商旭升. 两种高超声速一体化构型的气动性能对比分析[J]. 航空工程进展, 2011, 2(3): 305-311.

[15] Zhang H Y, Cheng K M, Wu Y Z. A study on the flowpath and the aerodynamic characteristic of a hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(1): 119-123 (in Chinese). 张红英, 程克明, 伍贻兆. 某高超飞行器流道冷流特征及气动力特性研究[J]. 空气动力学学报, 2009, 27(1): 119-123.

[16] Fan X Q, Li H, Yi S H, et al. Experiment of aerodynamic performance for hypersonicvehicle integrated with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6): 499-502 (in Chinese). 范晓樯, 李桦, 易仕和, 等. 侧压式进气道与飞行器机体气动一体化设计及实验[J]. 推进技术, 2004, 25(6): 499-502.

[17] Jin L, Liu J, Luo S B, et al. Aerodynamic characterization of an integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 42-45(in Chinese). 金亮, 柳军, 罗世彬, 等. 高超声速一体化飞行器冷流状态气动特性研究[J]. 实验流体力学, 2010, 24(1): 42-45.

[18] Jones K D, Sobieczky H, Seebass A R, et al. Waverider design for generalized shock geometries[J]. Spacecraft and Rockets, 1995, 32(6): 957-963.

[19] Sobieczky H, Zores B, Wang Z, et al. High speed flow design using osculating axisymmetric flows[C]//PICAST'3. Beijing: Aviation Industry Press, 1997: 1-5.

[20] He X Z, Le J L, Wu Y C. Design of a curved cone derived waverider forebody, AIAA-2009-7423[R]. Reston: AIAA, 2009.

[21] He X Z, Ni H L. Osculating curved cone (OCC) waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese). 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法和性能分析[J]. 力学学报, 2011, 43(6): 1077-1082.

[22] Wu Y C, He Y Y, Yu A Y, et al. Aerodynamic layout of spanwise truncated curved waverider compression inlet[J]. Journal of Aerospace Power, 2013, 28(7): 1570-1575 (in Chinese). 吴颖川, 贺元元, 余安远, 等. 展向截断曲面乘波压缩前体进气道气动布局研究[J]. 航空动力学报, 2013, 28(7): 1570-1575.

[23] Wu Y C, He Y Y, He W, et al. The design of osculating curved cone waverider based hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(1): 8-13 (in Chinese). 吴颖川, 贺元元, 贺伟, 等. 基于密切曲锥的乘波构型一体化飞行器设计方法研究[J]. 空气动力学学报, 2014, 32(1): 8-13.

[24] Mao X B. 2.4 m impulse combustion wind tunnel[EB/OL]. (2012-7-12)[2014-6-15]. http://www.cardc.cn/html/Facility/cgs/Cumbustion/44.html. 毛雄兵. 2.4 m脉冲燃烧风洞[EB/OL]. (2012-7-12 )[2014-6-15]. http://www.cardc.cn/html/Facility/cgs/Cumbustion/44.html.

[25] He Y Y, Le J L, Ni H L. Numerical and experimental study of airbreathing hypersonic airframe/propulsion integrative vehicle[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 29-34 (in Chinese). 贺元元, 乐嘉陵, 倪鸿礼. 吸气式高超声速机体/推进一体化飞行器数值和试验研究[J]. 实验流体力学, 2007, 21(2): 29-34.

[26] Wang L, Xing J W, Zheng Z H, et al. One-dimensional evaluation of the scramjet flowpath performance[J]. Journal of Propulsion Technology, 2008, 29(6): 641-646 (in Chinese). 王兰, 邢建文, 郑忠华, 等. 超燃发动机内流性能的一维评估[J]. 推进技术, 2008, 29(6): 641-646.

[27] Berry S, Daryabeigi K, Wurster K, et al. Boundary layer transition on X-43A, AIAA-2008-3736[R]. Reston: AIAA, 2008.

[28] Berry S, Auslender A H, Dilley A D, et al. Hypersonic boundary-layer trip development for hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 853-864.

[29] Schneider S P. Effects of roughness on hypersonic boundary-layer transition, AIAA-2007-0305[R]. Reston: AIAA, 2007.

[30] Choudhari M, Li F, Edwards J. Stability analysis of roughness array wake in a high-speed boundary layer, AIAA-2009-0170[R]. Reston: AIAA, 2009.

[31] Zhao H Y, Zhou Y, Ni H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 1-6 (in Chinese). 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学, 2012, 26(1): 1-6.

[32] Xiao Z X, Zhang M H, Xiao L H, et al. Studies of roughness-induced transition using three-equation k-ω-γ transition/turbulence model, AIAA-2013-3111[R]. Reston: AIAA, 2013.

[33] Le J L, Liu W X, He W, et al. Impulse combustion wind tunnel and its application in rocket and scramjet research[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 1-10 (in Chinese). 乐嘉陵, 刘伟雄, 贺伟, 等. 脉冲燃烧风洞及其在火箭和超燃发动机研究中的应用[J]. 实验流体力学, 2005, 19(1): 1-10.

[34] Yang S H, Le J L. Numerical simulation of liquid fuel atomization in supersonic cross flow[J]. Journal of Propulsion Technology, 2008, 29(5): 519-522 (in Chinese). 杨顺华, 乐嘉陵. 超声速气流中液体燃料雾化数值模拟[J]. 推进技术, 2008, 29(5): 519-522.

[35] Le J L, He W, Yang S H, et al. Investigation of ignition characteristics for kerosene fueled scramjet, ISABE-2009-1322[R]. Montreal: The International Society Engines of Airbreathing, 2009.

[36] The National Natural Science Fund Committee Office. The annual directory of the major research plan 2014 of "Basic Research of Turbulent Combustion for the Engine" [R]. Beijing: The National Natural Science Fund Committee Office, 2014 (in Chinese). 国家自然科学基金委员会办公室. "面向发动机的湍流燃烧基础研究"重大研究计划2014年度项目指南[R]. 北京: 国家自然科学基金委员会办公室, 2014.

Outlines

/