Electronics and Control

Asynchronous track-to-track association algorithm based on similarity degree of interval-real sequence

  • YI Xiao ,
  • HAN Jianyue ,
  • ZHANG Huaiwei ,
  • GUAN Xin
Expand
  • Department of Electronic and Information Engineering, Naval Aeronautical Engineering Institute, Yantai 264001, China

Received date: 2014-05-21

  Revised date: 2014-10-08

  Online published: 2014-10-14

Supported by

National Natural Science Foundation of China(61032001); Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-11-0872)

Abstract

Because local sensors in the distributed multi-target tracking system usually start working at different time and provide tracks at different rates with different communication delays, the local tracks from different sensors are usually asynchronous. The current solution is to synchronize the tracks before track association. But the estimation error spreads when synchronizing, which affects the performance of correlation. To solve the problem, an asynchronous track-to-track association method based on similarity degree of interval-real sequence is presented. Firstly, the track sequences are transformed to same-length sequences which contain interval data and real data by interval-real sequence transform (IRST). Then a new difference measurement for the sequences is defined, by which the correlation degree can be calculated and the track association conclusion be made. Simulation results show that the presented method can effectively solve the asynchronous track-to-track association problem, and its performance is seldom affected in the case of different communication delays and disorderly data.

Cite this article

YI Xiao , HAN Jianyue , ZHANG Huaiwei , GUAN Xin . Asynchronous track-to-track association algorithm based on similarity degree of interval-real sequence[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1212 -1220 . DOI: 10.7527/S1000-6893.2014.0275

References

[1] Tian X, Bar-Shalom Y. Track-to-track fusion configurations and association in a sliding widow[J]. Journal of Advances in Information Fusion, 2009,4(2): 146-164.
[2] Rafati A, Moshiri B, Rezaei J. A new algorithm for general asynchronous sensor bias estimation in multisensor multi-target systems[C]// Proceedings of 10th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2007: 296-301.
[3] Qi Y Q, Jing Z L, Hu S Q. General solution for asynchronous sensors bias estimation[C]// Proceedings of 11th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2008: 258-264.
[4] He Y, Wang G H, Guan X, et al. Information fusion theory with applications[M]. Beijing: Publishing House of Electronics Industry, 2010: 10-12 (in Chinese). 何友, 王国宏, 关欣, 等. 信息融合理论及应用[M]. 北京: 电子工业出版社, 2010: 10-12.
[5] Pan Q, Liang Y, Yang F, et al. Modern target tracking and information fusion[M]. Beijing: National Defense Industry Press, 2009: 65-77 (in Chinese). 潘泉, 梁彦, 杨峰, 等. 现代目标跟踪与信息融合[M]. 北京: 国防工业出版社, 2009: 65-77.
[6] Zhu H Y, Han C Z, Han H. Asynchronous track-to-track association method in distributed multi-sensor information fusion system[J]. Control Theory and Applications, 2004, 21(3): 453-456 (in Chinese). 朱洪艳, 韩崇昭, 韩红. 分布式多传感信息融合系统的异步航迹关联方法[J]. 控制理论与应用, 2004, 21(3): 453-456.
[7] Cheng Z, Li H, Zhang A. Algorithmvfor multi-sensor asynchronous track association based on pseudo measurement[J]. Chinese Journal of Sensors and Actuators, 2006, 19(3): 878-881 (in Chinese). 程琤, 李辉, 张安. 基于伪点迹的多传感器异步航迹关联算法[J]. 传感技术学报, 2006, 19(3): 878-881.
[8] Tian X, Bar-Shalom Y. Sliding window test vs. single time test for track-to-track association[C]// Proceedings of 11th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2008: 1-8.
[9] Guo Y H, Yuan C. A mutation ant colony algorithm for the asynchronous track correlation[J]. Acta Electronica Sinica, 2012, 40(11): 2200-2205 (in Chinese). 郭蕴华, 袁成. 一种异步航迹关联的变异蚁群算法[J]. 电子学报, 2012, 40(11): 2200-2205.
[10] Liu W F, Wen C L. A track association algorithm based on the OSPA distance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1083-1092 (in Chinese). 刘伟峰, 文成林. 基于OSPA距离的航迹关联方法[J]. 航空学报, 2012, 33(6): 1083-1092.
[11] Guan X, He Y, Yi X. Grey track-to-track correlation algorithm for distributed multi-target tracking system[J]. Signal Processing, 2006, 86(11): 3448-3455.
[12] Yi X, Zhang H W, Cao X Y, et al. A track association algorithm for distributed multi-target system based on gray numbers[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2), 352-360 (in Chinese). 衣晓, 张怀巍, 曹昕莹, 等. 基于区间灰数的分布式多目标航迹关联算法[J]. 航空学报, 2013, 34(2), 352-360.
[13] Deng J L. Grey system theory[M]. Wuhan: Huazhong University of Science and Technology Press, 2002: 158-161 (in Chinese). 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002: 158-161.
[14] Liu S F, Dang Y G, Fang Z G, et al. Grey system theory and application[M]. Beijing: Science Press, 2005: 37-39 (in Chinese). 刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2005: 37-39.
[15] Li L, He F, Huang K D. Asynchronous track fusion based Out-of-Sequence-Measurement algorithm[J]. Journal of Xi'an Jiaotong University, 2008, 42(4): 458-461 (in Chinese). 李林, 何芳, 黄柯棣. 基于异步航迹融合的乱序数据处理算法[J]. 西安交通大学学报, 2008, 42(4): 458-461.

Outlines

/