Aerothermodynamics

Transition and prediction for hypersonic boundary layers

  • LUO Jisheng
Expand
  • School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

Received date: 2014-08-04

  Revised date: 2014-10-08

  Online published: 2014-10-09

Supported by

National Natural Science Foundation of China (11332007)

Abstract

It is summarized that the basic process and problems of the transition of boundary layers. Based on which, the fundamentally distinguishes in instability of hypersonic boundary layers from incompressible boundary layers are shown, and the transition mechanism, receptivity characteristic, transition prediction methods for three-dimensional hypersonic boundary layers are introduced, in which the eN method using in engineering and it's rational improvement is specially shown. Some application examples of prediction transition for three-dimensional hypersonic boundary layers using eN method are given. Finally, the difficulty and problems need to be solved in the hypersonic boundary layers are introduced.

Cite this article

LUO Jisheng . Transition and prediction for hypersonic boundary layers[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 357 -372 . DOI: 10.7527/S1000-6893.2014.0244

References

[1] Mack L M. Stability of the compressible laminar boundary layer according to a direct numerical solution[R]. In AGARD 97, Part.1, 1965: 329-362.

[2] Mack L M. Boundary-layer linear stability theory,ADP004046[R]. Pasadena,CA: Jet Propulsion Laboratory, 1969.

[3] Mack L M. Transition prediction and linear stability theory[J]. Proceedings of AGARD Conference,1977, 224:5-34.

[4] Mack L M. Three-dimensional effects in boundary layer stability[C]//Proceedings of 12th Symposium on Naval Hydrodyn. Washington, D.C.: National Academy of Science, 1978: 63-70.

[5] Mack L M. On the stability of the boundary layer on a transonic swept wing,AIAA-1979-0264[R]. Reston: AIAA,1979.

[6] Mack L M. Boundary-layer linear stability theory of special course on stability and transition of laminar flow,ADA147243[R]. Pasadena, CA: Jet Propulsion Laboratory, 1984.

[7] Mack L M. Stability of axisymmetric boundary layers on sharp cones at hypersonic Mach nambers, AIAA-1987-1413[R]. Reston: AIAA, 1987.

[8] Mack L M. Stability of three-dimensional boundary layers on swept wings at transonic speed[J].Symposium Transsonicam Ⅲ, 1988: 209-223.

[9] Mankbadi R R, Wu X, Lee S S. A critical-layer analysis of the resonant triad in Blasius boundary layer transition: nonlinear interaction[J]. Journal of Fluid Mechanics,1993, 256: 85-106.

[10] Wu X. Viscous effects on fully coupled resonant triad interactions: an analytical approach[J]. Journal of Fluid Mechanics, 1995, 292: 377-407.

[11] Wu X, Stewart P A, Cowley S J. On the catalytic role of the phase-locked interaction of Tollmien-Schlichting waves in boundary layer transition[J]. Journal of Fluid Mechanics, 2007, 590: 265-294.

[12] Fasel H, Thumm A, Bestek H. Direct numerical simulation of transition in supersonic boundary layer: oblique breakdown[J]. Transitional and Turbulent Compressible Flows, 1993, 151: 77-92.

[13] Leib S J, Lee S S. Nonlinear evolution of a pair of oblique instability waves in a supersonic boundary layer[J]. Journal of Fluid Mechanics, 1995, 282: 271-339.

[14] Mayer C S J, Wernz S, Fasel H F. Investigation of oblique breakdown in a supersonic boundary layer at Mach 2 using DNS, AIAA-2007-0949[R]. Reston: AIAA, 2007.

[15] Mayer C S J, Fasel H F. Investigation of asymmetric subharmonic resonance in a supersonic boundary layer at Mach 2 using DNS,AIAA-2008-0591[R]. Reston: AIAA, 2008.

[16] Laible A C, Mayer C S J, Fasel H F. Numerical investigation of transition for a cone at Mach 3.5: oblique breakdown, AIAA-2009-3557[R]. Reston: AIAA, 2009.

[17] Mayer C S J, Laible A C, Fasel H F. Numerical investigation of transition initiated by a wave packet on a cone at Mach 3.5, AIAA-2009-3809[R]. Reston: AIAA, 2009.

[18] Kosinov A D, Semionov N V, Shevelkov S G. Investigation of supersonic boundary layer stability and transition using controlled disturbances[J]. Methods of Aerophysical Research, 1994, 2: 159-166.

[19] Kosinov A D, Semionov N V, Shevelkov S G, et al. Experiments on the nonlinear instability of supersonic boundary layers[J]. Nonlinear Instability of Nonparallel Flows, 1994: 196-205.

[20] Ermolaev Y G, Kosinov A D, Semionov N V. Experimental investigation of laminar-turbulent transition process in supersonic boundary layer using controlled disturbances[J]. Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, 1996: 17-26.

[21] Wang X J,Luo J S,Zhou H. Inherent mechanism of breakdown in laminar-turbulent transition of plane channel flows[J]. Science in China Series G Physics, Mechanics & Astronomy, 2005, 35(1): 71-78 (in Chinese). 王新军, 罗纪生, 周恒. 平面槽道流中层流-湍流转捩的"breakdown"过程的内在机理[J]. 中国科学 G辑 物理学 力学 天文学, 2005, 35 (1): 71-78.

[22] Huang Z F, Cao W, Zhou H. The mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate-temporal mode[J]. Science in China Series G Physics, Mechanics & Astronomy, 2005, 35(5): 537-547 (in Chinese). 黄章峰, 曹伟, 周恒. 超音速平板边界层转捩中层流突变为湍流的机理-时间模式[J]. 中国科学 G辑: 物理学 力学 天文学, 2005, 35(5): 537-547.

[23] Cao W, Huang Z F, Zhou H. Study of the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate[J]. Applied Mathematics and Mechanics, 2006, 27(4): 379-386 (in Chinese). 曹伟, 黄章峰, 周恒. 超音速平板边界层转捩中层流突变为湍流的机理研究[J]. 应用数学和力学, 2006, 27(4): 379-386.

[24] Dong M, Luo J S. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(8): 912-920 (in Chinese). 董明, 罗纪生. 高超音速零攻角尖锥边界层转捩的机理[J]. 应用数学和力学, 2007, 28(8): 912-920.

[25] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone[J]. AIAA Journal, 2008, 46(11): 2899-2913.

[26] Li X L, Fu D X, Ma Y W.Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010,22(2): 025105.

[27] Liu J X. Evolution of disturbance in hypersonic blunt cone boundary layer at small angle of attack[D]. Tianjin: Tianjin University, 2010 (in Chinese). 刘建新. 小攻角钝锥高超声速边界层的扰动演化[D].天津: 天津大学, 2010.

[28] Yu M, Luo J S. Nonlinear evolution of Klebanoff type second mode disturbances in supersonic flat-plate boundary layer[J]. Applied Mathematics and Mechanics, 2014,35(3): 359-368

[29] Goldstein M E. The evolution of Tollmien-Sclichting waves near a leading edge[J]. Journal of Fluid Mechanics,1983, 127: 59-81.

[30] Goldstein M E. Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry[J]. Journal of Fluid Mechanics,1985,154: 509-529.

[31] Ruban A I. On Tollmien-Schlichting wave generation by sound[J]. Fluid Dynamics, 1985, 19: 709-716.

[32] Goldstein M E, Hultgren L S. Boundary-layer receptivity to long-wave free-stream disturbances[J]. Annual Review of Fluid Mechanics, 1989, 21: 137-166.

[33] Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34: 291-319.

[34] Fedorov A V. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics,2011, 43: 79-95.

[35] Zhong X, Wang X. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012,44: 527-561.

[36] Lam S H, Rott N. Theory of linearized time-dependent boundary layers, TN-60-1100[R]. Office of Scientific Research, United States Air Force, 1960.

[37] Duck P W, Ruban A I, Zhikharev C N. The generation of Tollmien-Schlichting waves by free-stream turbulence[J]. Journal of Fluid Mechanics, 1996, 312: 341-371.

[38] Wu X. On local boundary-layer receptivity to vortical disturbances in the free stream[J]. Journal of Fluid Mechanics, 2001, 449: 373-393.

[39] Dietz A J. Local boundary-layer receptivity to a convected free-stream disturbance[J]. Journal of Fluid Mechanics,1999, 378: 291-317.

[40] Zhang Y M, Zhou H. Numerical study of local boundary layer receptivity to freestream vortical disturbances[J]. Applied Mathematics and Mechanics, 2005, 26(5): 505-511 (in Chinese). 张永明, 周恒. 自由流中涡扰动的边界层感受性的数值研究[J]. 应用数学和力学, 2005, 26(5): 505-511.

[41] Wu X. Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: a second-order asymptotic theory and comparison with experiments[J]. Journal of Fluid Mechanics, 2001, 431: 91-133.

[42] Luo J S, Zhou H. On the generation of Tollmien-Schlichting waves in the boundary layer of a flat plate by disturbances in the free stream[J]. Proceedings of the Royal Society, 1988, 413: 351-367.

[43] Wu X. Generation of Tollmien-Schlichting waves by convecting gusts interacting with sound[J]. Journal of Fluid Mechanics, 1999, 397: 285-316.

[44] Fedorov A V. Receptivity of high-speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics,2003, 491: 101-129.

[45] Fedorov A V, Khoklov A P. Prehistory of instability in a hypersonic boundary layer[J]. Theoretical and Computational Fluid Dynamics, 2001, 14(6): 359-375.

[46] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 3: effects of different types of free-stream disturbances[J]. Journal of Fluid Mechanics,2005, 532: 63-109.

[47] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 2: receptivity to freestream sound[J]. Journal of Fluid Mechanics, 2003, 488: 79-121.

[48] Fedorov A V, Tumin A. High-speed boundary-layer instability: old terminologyand a new framework[J].AIAA Journal, 2011, 49(8): 1647-1657.

[49] Fedorov A V, Khoklov A P. Excitation of unstable modes in a supersonic boundary layer by acoustic waves[J]. Fluid Dynamics, 1991, 9: 456-467.

[50] Cebeci T,Stewartson K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4): 398-405.

[51] Mack L M. Stability of three dimensional boundary layers on swept wings at transonic speeds[J]. Symposium Transsonicum III, 1989: 209-223.

[52] Malik M R, Balakumar P. Instability and transition in three-dimensional supersonic boundary layers, AIAA-1992-5049[R]. Reston: AIAA, 1992.

[53] Su C H, Zhou H. Transition prediction of a hypersonic boundary layer over a cone at a small angle of attack-with the improvement of eN method[J]. Science in China Series G Physics, Mechanics & Astronomy, 2009, 39(1):123-130 (in Chinese). 苏彩虹, 周恒. 小攻角高超音速尖锥边界层的转捩预测及eN法的改进[J].中国科学 G辑: 物理学 力学 天文学,2009, 39(1): 123-130.

[54] Su C H, Zhou H. Transition prediction for supersonic and hypersonic boundary layers on a cone with an angle of attack[J]. Science in China Series G Physics, Mechanics & Astronomy, 2009, 39(6): 874-882 (in Chinese). 苏彩虹, 周恒. 超音速和高超音速有攻角圆锥边界层的转捩预测[J].中国科学 G辑 物理学 力学 天文学, 2009, 39(6): 874-882.

[55] King R A. Three-dimensional boundary-layer transition on a cone at Mach 3.5[J]. Experiments in Fluids, 1992, 13: 305-314.

[56] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22: 025105.

[57] Juliano T J, Schneider S P. Instability and transition on the HIFiRE-5 in a Mach-6 quiet tunnel[M]. West Lafayette: Purdue University Press, 2010.

Outlines

/