ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Normal posture adjustment algorithm for lightweight auto-crawling drilling and riveting system based on parallel mechanism
Received date: 2014-06-30
Revised date: 2014-07-28
Online published: 2014-09-23
Supported by
National Natural Science Foundation of China (51105205);Aeronautical Science Foundation of China (2013ZE52067)
Normal posture adjustment is the technological basis for automatic drilling and riveting of aircraft components and provides technical assurance to improve the drilling quality. According to the functional requirements analysis of auto-crawling drilling and riveting system in aircraft assembly, lightweight auto-crawling drilling and riveting system is designed based on the normal posture adjustment of the parallel mechanism, the improved Grubler-Kutzbach algorithm is used to analyze the system's degree of freedom and it is demonstrated that the mechanism can realize 5 degrees of freedom motion in the system which can conform to the requirement of normal posture adjustment in the paper. It also builds the mathematical models of normal detection and normal posture adjustment, inverse kinematics algorithm and example of adjustment amount for parallel mechanism is proposed when the end effector is adjusted from the original state to the expected posture under the circumstances that the position of virtual tip point can be ensured not to be changed, and verification is implemented using Matlab software. The results indicate that the inverse kinematic algorithm of normal posture adjustment is feasible and reliable with simple calculation process.
HAN Feng , TIAN Wei , LIAO Wenhe , ZHANG Xuan , WANG Lifeng . Normal posture adjustment algorithm for lightweight auto-crawling drilling and riveting system based on parallel mechanism[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 2083 -2090 . DOI: 10.7527/S1000-6893.2014.0264
[1] Xu G K. Automatic assembly technology for large ai-rcraft[J]. Acta Aeronoutica et Astronautica Sinica, 2008, 29(3): 734-740 (in Chinese). 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3): 734-740.
[2] Bi S S, Liang J. Robotic drilling system for titanium structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(6-8): 767-774
[3] Sarh B. Assembly techniques for space vehicles, SAE Paper 2000-01-3028 [R]. New York: SAE, 2000.
[4] Wang M, Chen W L, Zhang D L, et al. Light-weight automatic drilling system and key technology for aircraft[J]. Aeronautical Manufacturing Technology, 2012(19): 40-43 (in Chinese). 王珉, 陈文亮, 张得礼, 等. 飞机轻型自动化制孔系统及关键技术研究[J]. 航空制造技术, 2012(19): 40-43.
[5] Du Z C. Measurement method for evaluating normal direction of surface for digital drilling and riveting[J]. Aeronautical Manufacturing Technology, 2011(22): 108-111 (in Chinese). 杜兆才. 数字化钻铆的曲面法向测量方法[J]. 航空制造技术, 2011(22): 108-111.
[6] Ying G M, Wang Z Q, Kang Y G, et al. Study on normal vector measurement method in auto-drilling & riveting of aircraft panel[J]. Machine Tool & Hydraulics, 2010, 38(23): 1-8 (in Chinese). 应高明, 王仲奇, 康永刚, 等. 飞机壁板自动钻铆法向量测量方法研究[J]. 机床与液压, 2010, 38(23): 1-8.
[7] Qin X S, Wang W D, Lou A L, et al. Three-point bracket regulation algorithm for drilling and riveting of aerofoil[J]. Acta Aeronoutica et Astronautica Sinica, 2007, 28(6): 1455-1460 (in Chinese). 秦现生, 汪文旦, 楼阿莉, 等. 大型壁板数控钻铆的三点快速调平算法[J]. 航空学报, 2007, 28(6): 1455-1460.
[8] Guo Z M, Jiang J X, Ke Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronoutica et Astronautica Sinica, 2009, 30(7): 1319-1324 (in Chinese). 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7): 1319-1324.
[9] Tian W, Zhou W X, Zhou W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500.
[10] Wang M, Zeng C, Chen W L, et al. A kind of parallel mechanism of autonomous mobile for aircraft assembly[J]. Journal of Mechanical Engineering, 2013, 49(15): 49-54 (in Chinese). 王珉, 曾长, 陈文亮, 等. 一种用于飞机装配的八足并联自主移动机构[J]. 机械工程学报, 2013, 49(15): 49-54.
[11] Zhang C J, Li Y W. A new walking robot based on 3-RPC parallel mechanism[J]. Journal of Mechanical Engineering, 2011, 47(15): 25-30 (in Chinese). 张成军, 李艳文. 一种基于3-RPC并联机构的新型步行机器人[J]. 机械工程学报, 2011, 47(15): 25-30.
[12] Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006: 116-125 (in Chinese). 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006: 116-125.
[13] Liu H W. The analysis of degree of freedom for spatial parallel mechanism[J]. Journal of Mechanical Transmission, 2009, 33(4): 90-92 (in Chinese). 刘宏伟. 空间并联机构的自由度分析[J]. 机械传动, 2009, 33(4): 90-92.
[14] Liu D J, Che R S, Ye D, et al. Error modeling and simulation of 3-DOF parallel link coordinate measuring machine[J]. China Mechanical Engineering, 2001, 12(7): 752-755 (in Chinese). 刘得军, 车仁生, 叶东, 等. 三自由度并联机构坐标测量机误差建模与仿真[J]. 中国机械工程, 2001, 12(7): 752-755.
[15] Yang M L, Qing S X. Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism[J]. Robotica, 2005, 23(2): 219-229.
[16] Zheng X Z, Luo Y G, Bin H Z. Inverse dynamics of 3-UPU parallel mechanism with pure rotation based on D'Alembert principle[C]//Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation. Piscataway, NJ: IEEE Press, 2007: 2842-2847.
[17] Huang P, Wang Q, Li J X, et al. Adjustment optimal trajectory planning of aircraft component based on dynamics model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2672-2682 (in Chinese). 黄鹏, 王青, 李江雄, 等. 基于动力学模型的飞机大部件调姿轨迹规划方法[J]. 航空学报, 2014, 35(9): 2672-2682.
/
〈 | 〉 |