[1] Tsien H S. Similarity laws of hypersonic flows[J]. Journal of Mathematical Physics, 1946, 25(3): 247-251.
[2] Bertin J J, Cummings R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38: 129-157.
[3] Anderson Jr J D. Hypersonic and high-temperature gas dynamics[M]. 2nd. Virginia: AIAA, 2006: 200.
[4] Rasmussen M. Hypersonic flow[M]. New York: John Wiley & Sons, Inc., 1994: 322.
[5] Bushnell D M. Hypersonic flight experimentation-status and shortfalls[C]//Future Aerospace Technology in the Service of the Alliance. Hampton,VA: NASA Langley Research Center, 1997.
[6] Moretti G, Abbett M. A time-dependent computational method for blunt-body flows[J]. AIAA Journal, 1966, 4(12): 2136-2141.
[7] Shang J S. Three decades of accomplishments in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2004, 40(3): 173-197.
[8] MacCormack R. The effect of viscosity in hypervelocity impact cratering[J]. Journal of Spacecraft and Rockets, 2003, 40(5): 757-763.
[9] Shang J S, Hankey Jr W L. Numerical solution of the compressible Navier-Stokes equations for a three-dimensional corner[C]//AIAA Aerospace Sciences Meeting. California: AIAA, 1977.
[10] Godunov S K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[J]. Matematicheskii Sbornik, 1959, 89(3): 271-306.
[11] Steger J L, Warming R F. Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods[J]. Journal of Computational Physics, 1981, 40(2): 263-293.
[12] van Leer B. Flux-vector splitting for the Euler equations[C]//Eighth International Conference on Numerical Methods in Fluid Dynamics. Berlin: Springer Heidelberg, 1982: 507-512.
[13] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[14] Roe P L. Characteristic-based schemes for the Euler equations[J]. Annual Review of Fluid Mechanics, 1986, 18(1): 337-365.
[15] Einfeldt B. On Godunov-type methods for gas dynamics[J]. SIAM Journal on Numerical Analysis, 1988, 25(2): 294-318.
[16] Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25-34.
[17] Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3): 357-393.
[18] Zhang H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese). 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2): 143-165.
[19] Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1987, 131(2): 231-303.
[20] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212.
[21] Lele S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42.
[22] Zhong X L. Direct numerical simulation of hypersonic boundary-layer transition over blunt leading edges. I-A new numerical method and validation[C]//AIAA, Aerospace Sciences Meeting & Exhibit. Reno, NV,USA: AIAA, 1997.
[23] Zhong X L. Direct numerical simulation of hypersonic boundary-layer transition over blunt leading edges. II-Receptivity to sound[C]//AIAA, Aerospace Sciences Meeting & Exhibit. Reno, NV: AIAA, 1997.
[24] Zhong X. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition[J]. Journal of Computational Physics, 1998, 144(2): 662-709.
[25] Adams N A, Shariff K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J]. Journal of Computational Physics, 1996, 127(1): 27-51.
[26] Wang J, Wang L P, Xiao Z, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229(13): 5257-5279.
[27] Davis R T. Numerical solution of the hypersonic viscous shock-layer equations[J]. AIAA Journal, 1970, 8(5): 843-851.
[28] Rubin S G, Lin A. Marching with the parabolized Navier-Stokes equations[J]. Israel Journal of Technology, 1980, 18: 21-31.
[29] Rubin S G, Tannehill J C. Parabolized/reduced Navier-Stokes computational techniques[J]. Annual Review of Fluid Mechanics, 1992, 24(1): 117-144.
[30] Prendergast K H, Xu K. Numerical hydrodynamics from gas-kinetic theory[J]. Journal of Computational Physics, 1993, 109(1): 53-66.
[31] Xu K, Prendergast K H. Numerical Navier-Stokes solutions from gas kinetic theory[J]. Journal of Computational Physics, 1994, 114(1): 9-17.
[32] Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J]. Journal of Computational Physics, 2001, 171(1): 289-335.
[33] Harris S. An introduction to the theory of the Boltzmann equation[M]. New York: Dover Publications, Inc., 1994: 322.
[34] Ohwada T. On the construction of kinetic schemes[J]. Journal of Computational Physics, 2002, 177(1): 156-175.
[35] Ohwada T, Kobayashi S. Management of discontinuous reconstruction in kinetic schemes[J]. Journal of Computational Physics, 2004, 197(1): 116-138.
[36] Luo J, Xu K. A high-order multidimensional gas-kinetic scheme for hydrodynamic equations[J]. Science China Technological Sciences, 2013, 56(10): 2370-2384.
[37] Ohwada T, Adachi R, Xu K, et al. On the remedy against shock anomalies in kinetic schemes[J]. Journal of Computational Physics, 2013, 255: 106-129.
[38] Xu K, Huang J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20): 7747-7764.
[39] Gnoffo P A. Updates to multi-dimensional flux recon-struction for hypersonic simulations on tetrahedral grids[C]//48th AIAA Aerospace Sciences Meeting. Orlando, FL: AIAA, 2010.
[40] Xu K, Mao M, Tang L. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow[J]. Journal of Computational Physics, 2005, 203(2): 405-421.
[41] Holden M S, Wadhams T P. A review of experimental studies for DSMC and Navier-Stokes code validation in laminar regions of shock/shock and shock boundary layer interaction including real gas effects in hyper-velocity flows[C]//36th AIAA Thermophysics Conference. Orlando, FL: AIAA, 2003.
[42] Candler G V, Nompelis I, Druguet M C. Navier-Stokes predictions of hypersonic double-cone and cylinder-flare flow fields[C]//AIAA Conference. Xi'an ,China: AIAA, 2001.
[43] Gaitonde D V, Canupp P W, Holden M S. Heat transfer predictions in a laminar hypersonic viscous/inviscid interaction[J]. Journal of Thermophysics and Heat Transfer, 2002, 16(4): 481-489.
[44] Knight D, Longo J, Drikakis D, et al. Assessment of CFD capability for prediction of hypersonic shock interactions[J]. Progress in Aerospace Sciences, 2012, 48: 8-26.
[45] Fukui S, Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report—derivation of a generalized lubrication equation including thermal creep flow[J]. Journal of Tribology, 1988, 110(2): 253-261.
[46] Li Q, Fu S, Xu K. Application of gas-kinetic scheme with kinetic boundary conditions in hypersonic flow[J]. AIAA Journal, 2005, 43(10): 2170-2176.
[47] Markelov G N, Kudryavtsev A N, Ivanov M S. Continuum and kinetic simulation of laminar separated flow at hypersonic speeds[J]. Journal of Spacecraft and Rockets, 2000, 37(4): 499-506.
[48] Chanetz B, Benay R, Bousquet J M, et al. Experimental and numerical study of the laminar separation in hypersonic flow[J]. Aerospace Science and Technology, 1998, 2(3): 205-218.
[49] Graur I A, Ivanov M S, Markelov G N, et al. Comparison of kinetic and continuum approaches for simulation of shock wave/boundary layer interaction[J]. Shock Waves, 2003, 12(4): 343-350.
[50] Li Q, Xu K, Fu S. A high-order gas-kinetic Navier-Stokes flow solver[J]. Journal of Computational Physics, 2010, 229(19): 6715-6731.
[51] Xuan L J, Xu K. A new gas-kinetic scheme based on analytical solutions of the BGK equation[J]. Journal of Computational Physics, 2013, 234: 524-539.
[52] Liu N. High-order accurate gas-kinetic schemes[D]. Beijing: Peking University, 2013 (in Chinese). 刘娜. 高精度气体动理学格式[D]. 北京: 北京大学, 2013.
[53] Righi M. A modified gas-kinetic scheme for turbulent flow[J]. Communications in Computational Physics 2014, 16(1): 239-263.
[54] Kumar G, Girimaji S S, Kerimo J. WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence[J]. Journal of Computational Physics, 2013, 234: 499-523.
[55] Sun W, Jiang S, Xu K. Asymptotic preserving unified gas kinetic scheme for grey radiative transfer equations[J]. Preprint, 2015.