ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Inventory control of multi-echelon maintenance supply system with multiple repair priorities
Received date: 2014-05-29
Revised date: 2014-09-16
Online published: 2014-09-22
Supported by
National Defense Pre-research Foundation (51304010206, 51327020105)
The preparation of spare parts is closely related to the maintenance mechanism during the process of maintenance and support. Based on the traditional VARI-METRIC model, the assumption for infinite repair channel and first-come first-served service is relaxed. Considering the influence of multiple repair priorities for failure parts during the maintenance process, the computational model for average time is modified according to queuing system theory and the multi-echelon multi-indenture initial stock distribution model under repair priorities is established. The goal function for priority assignment is proposed and then the priority assignment project for each support site is optimized by intelligent optimization algorithm. Based on this, the spare parts' inventory is optimized by marginal analysis algorithm. Consequently, the method of sequential priority assignment and stock optimization is proposed and then algorithm complexity is carried out. In a given example, a proper priority setting may lead to a significant reduction in the inventory investment required to attain the system support efficiency; the proposed sequential optimization method can significantly reduce the computation time when the accuracy is achieved. The proposed model and optimization method have a strong sense for equipment support staff to develop rational support programs.
XU Li , LI Qingmin , LI Hua . Inventory control of multi-echelon maintenance supply system with multiple repair priorities[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1185 -1194 . DOI: 10.7527/S1000-6893.2014.0262
[1] Sherbrooke C C. Metric: a multi-echelon technique for recoverable item control[J]. Operations Research, 1968, 16(1): 122-141.
[2] Muckstadt J A. A model for a multi-item, multi-echelon, multi-indenture inventory system[J]. Management Science, 1973, 20(4): 122-141.
[3] Slay F M. VARI-METRIC: an approach to modeling multi-echelon resupply when the demand process is Poisson with a gamma prior, Report AF301-3[R]. Washington, D.C.: Logistics Management Institute, 1984.
[4] Sherbrooke C C.VARI-METRIC:improved approximations for multi-indenture, multi-echelon availability models[J].Operations Research, 1986, 34(2): 311-319.
[5] Sherbrooke C C. Optimal inventory modeling of system: multi-echelon techniques[M]. 2nd ed. Boston: Artech House, 2004.
[6] Rustenburg W D, van Houtum G J, Zijm W H M. Spare parts management at complex technology-based organizations: an agenda for research[J]. International Journal of Production Economics, 2001, 71(1-3): 177-193.
[7] Francesco C, Giulio D G, Massimo T. Multi-echelon, multi-indenture spare parts inventory control subject to system availability and budget constraints[J]. Reliability Engineering and System Safety, 2013, 119(11): 95-101.
[8] Kimt J S, Shin K C, Yu H K. Optimal algorithm to determine the spare inventory level for a repairable-item inventory system[J]. Computers Operations Research, 1996, 23(3): 289-297.
[9] Diaz A, Fu M C. Models for multi-echelon repairable item inventory systems with limited repair capacity[J]. European Journal of Operational Research, 1997,97(3):480-492.
[10] Sleptchenko A, van der Heijden M C, van Harten A. Effects of finite repair capacity in multi-echelon, multi-indenture service part supply systems[J]. International Journal of Production Economics, 2002, 79(3): 209-230.
[11] Ruan M Z, Li Q M, Huang A L, et al. Inventory control of multi-echelon maintenance supply under finite repair channel constraint[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2018-2027 (in Chinese). 阮旻智, 李庆民, 黄傲林, 等. 有限维修渠道约束下多级维修供应系统库存控制[J]. 航空学报, 2012, 33(11): 2018-2027.
[12] van der Heijden M C, van Harten A, Sleptchenko S.Approximations for Markovian multi-class queues with preemptive priorities[J].Operations Research Letters, 2004,32(3): 273-282.
[13] Sleptchenko A, van der Heijden M C, van Harten A. Using repair priorities to reduce stock investment in spare part networks[J]. European Journal of Operational Research, 2005, 163(3): 733-750.
[14] Adan I J B F, Sleptchenko A, van Houtum G J. Reducing cost of spare parts supply system via static priorities[J]. Asia-Pacific Journal of Operational Research, 2009, 26(4): 559-585.
[15] Tiemessen H G H,van Houtum G J. Reducing costs of repair spare parts supply systems via scheduling, BETA Working Paper Series[R]. Enscheda: Eindhoven University of Technology, 2010.
[16] Caggiano K E, Muckstadt J A, Rappold J A. Integrated real-time capacity and inventory allocation for reparable service parts in a two-echelon supply system[J].Manufacturing and Service Operations Management,2006,8(3): 292-319.
[17] Sleptchenko A, Selen J, Adan I, et al. Joint queue length distribution of multi-class, single-sever queues with preemptive priorities, EURANDOM Report 2004-045[R]. Eindhoven: Technische Universiteit Eindhoven, 2004.
[18] Xia G Q, Chen H Z. Operational availability oriented inventory model for repairable spare parts of embarked air-wings[J]. Journal of Harbin Engineering University, 2013, 34(1): 1-6 (in Chinese). 夏国清, 陈红召. 面向使用可用度的舰载机可修备件库存模型[J]. 哈尔滨工程大学学报, 2013, 34(1): 1-6.
[19] Luo Y, Ruan M Z, Yuan Z Y. Modeling and optimization of repairable spare parts under the multi-echelon maintenance supply[J]. Systems Engineering—Theory and Practice, 2013, 33(10): 2623-2630 (in Chinese). 罗祎, 阮旻智, 袁志勇. 多级维修供应下可修复备件库存建模与优化[J]. 系统工程理论与实践, 2013, 33(10): 2623-2630.
/
〈 | 〉 |