ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Progress and outlook of plasma flow control
Received date: 2014-05-05
Revised date: 2014-09-07
Online published: 2014-09-19
Supported by
National Natural Science Foundation of China (51336011, 50906100); The Science Foundation for the Author of National Excellent Doctoral Dissertation of China (2011072); Science and Technology Development Program of Shaanxi Province(2013KJXX-83)
Plasma flow control is a new type of active flow control technology based on plasma aerodynamic actuation which is advantageous of short reactive time and broad bandwidth. The prospect of plasma flow control on improving aircraft/engine performance has made it a hot topic in the cross field of plasma dynamics and aerodynamics. This paper presents a review of the research progress from the aspects of dielectric barrier discharge (DBD) and arc discharge plasma aerodynamic actuation characteristics, boundary layer control, shock wave control and shock wave/boundary layer interaction control, compressor and turbine flow control, pipe flow and flight control. Also, future development of plasma flow control is looked forward in three aspects, i.e., innovation of plasma aerodynamic actuation, revealing the unsteady coupling mechanism of plasma aerodynamic actuation and complex flow, as well as breakthrough of the key technology of plasma flow control system.
Key words: plasma flow control; aircraft; engine; flow separation; shock wave; boundary layer
WU Yun , LI Yinghong . Progress and outlook of plasma flow control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(2) : 381 -405 . DOI: 10.7527/S1000-6893.2014.0246
[1] Starikovskiy A, Aleksandrov N. Nonequilibrium plasma aerodynamics[M]. Rijeka: InTech, 2011: 55-96.
[2] Bletzinger P, Ganguly B N, van Wie D, et al. Plasmas in high speed aerodynamics[J]. Journal of Physics D: Applied Physics, 2005, 38(4): R33-R57.
[3] Shang J S, Surzhikov S T, Kimmel R, et al. Mechanisms of plasma actuators for hypersonic flow control[J]. Progress in Aerospace Sciences, 2005, 41(8): 642-668.
[4] Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42: 505-529.
[5] Adamovich I V, Little J, Nishihara M, et al. Nanosecond pulse surface discharges for high-speed flow control, AIAA-2012-3137[R]. Reston: AIAA, 2012.
[6] Samimy M, Kearney-Fischer M, Kim J H. High-speed and high-Reynolds-number jet control using localized arc filament plasma actuators[J]. Journal of Propulsion and Power, 2012, 28(2): 269-280.
[7] Popkin S H, Cybyk B Z, Land III H B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications, AIAA-2013-0322[R]. Reston: AIAA, 2013.
[8] Moreau E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636.
[9] Caruana D. Plasmas for aerodynamic control[J]. Plasma Physics and Controlled Fusion, 2010, 52(12): 124045.
[10] Benard N, Moreau E. EHD force and electric wind produced by surface dielectric barrier discharge plasma actuators used for airflow control, AIAA-2012-3136[R]. Reston: AIAA, 2012.
[11] Li Y H, Wu Y, Song H M, et al. Plasma flow control[M]. Rijeka: InTech, 2011: 21-54.
[12] Li Y H, Wu Y, Li J. Review of the investigation on plasma flow control in China[J]. International Journal of Flow Control, 2012, 4(1-2): 1-17.
[13] Wang J J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78.
[14] Nie W S, Cheng Y F, Che X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese). 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734.
[15] Li Y H, Wu Y, Song H M, et al. Research progress and mechanism analysis of plasma flow control[C]//Proceeding of 6th Annual Power Meeting of Chinese Society of Aeronautics and Astronautics. [S.l.]: Power Branch of Chinese Society of Aeronautics and Astronautics, 2006: 790-799 (in Chinese). 李应红, 吴云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C]//中国航空学会第六届动力年会论文集.[出版地不详]:中国航空学会动力专业分会, 2006: 790-799.
[16] Khodataev K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5): 962-972.
[17] Hong Y J, Li Q, Fang J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101 (in Chinese). 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101.
[18] Roth J R, Sherman D M, Wilkinson S P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma, AIAA-1998-0328[R]. Reston: AIAA, 1998.
[19] Sasoh A, Kikuchi K, Sakai T. Spatio-temporal filament behaviour in a dielectric barrier discharge plasma actuator[J]. Journal of Physics D: Applied Physics, 2007, 40(14): 4181-4184.
[20] Enloe C L, McLaughlin T E, van Dyken R D, et al. Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology[J]. AIAA Journal, 2004, 42(3): 589-594.
[21] Opaits D F, Shneider M N, Miles R B, et al. Surface charge in dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2008, 15(7): 073505.
[22] Wu Y, Li Y H, Jia M, et al. Experimental investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge[J]. Chinese Journal of Aeronautics, 2010, 23(1): 39-45.
[23] Whalley R D, Choi K S. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma[J]. Journal of Fluid Mechanics, 2012, 703: 192-203.
[24] Benard N, Debien A, Moreau E. Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field[J]. Journal of Physics D: Applied Physics, 2013, 46(24): 245201.
[25] Kotsonis M, Ghaemi S. Forcing mechanisms of dielectric barrier discharge plasma actuators at carrier frequency of 625 Hz[J]. Journal of Applied Physics, 2011, 110(11): 113301.
[26] Durscher R, Roy S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators[J]. Experiments in Fluids, 2012, 53(4): 1165-1176.
[27] Font G I, Enloe C L, Newcomb J Y, et al. Effects of oxygen content on dielectric barrier discharge plasma actuator behavior[J]. AIAA Journal, 2011, 49(7): 1366-1373.
[28] Kriegseis J, Duchmann A, Tropea C, et al. On the classification of dielectric barrier discharge plasma actuators: A comprehensive performance evaluation study[J]. Journal of Applied Physics, 2013, 114(5): 053301.
[29] Wu Y, Li Y H, Jia M, et al. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics[J]. Applied Physics Letters, 2008, 93(3): 031503.
[30] Kriegseis J, Grundmann S, Tropea C. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2012, 19(7): 073509.
[31] Kriegseis J, Schröter D, Barckmann K, et al. Closed-loop performance control of dielectric-barrier-discharge plasma actuators[J]. AIAA Journal, 2013, 51(4): 961-967.
[32] Shyy W, Jayaraman B, Andersson A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11): 6434-6443.
[33] Singh K P, Roy S. Modeling plasma actuators with air chemistry for effective flow control[J]. Journal of Applied Physics, 2007, 101(12): 123308.
[34] Boeuf J P, Pitchford L C. Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge[J]. Journal of Applied Physics, 2005, 97(10): 103307.
[35] Nishida H, Nonomura T, Abe T. Three-dimensional simulations of discharge plasma evolution on a dielectric barrier discharge plasma actuator[J]. Journal of Applied Physics, 2014, 115(13): 133301.
[36] Font G I, Morgan W L. Recent progress in dielectric barrier discharges for aerodynamic flow control[J]. Contribution to Plasma Physics, 2007, 47(1-2): 103-110.
[37] Mertz B, Corke T C. Single-dielectric barrier discharge plasma actuator modelling and validation[J]. Journal of Fluid Mechanics, 2011, 669: 557-583.
[38] Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experiments in Fluids, 2007, 43(6): 917-928.
[39] Thomas F O, Corke T C, Iqbal M, et al. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47(9): 2169-2178.
[40] Debien A, Benard N, Moreau E. Streamer inhibition for improving force and electric wind produced by DBD actuators[J]. Journal of Physics D: Applied Physics, 2012, 44(21): 215201.
[41] Zito J C, Durscher R J, Soni J, et al. Flow and force inducement using micron size dielectric barrier discharge actuators[J]. Applied Physics Letters, 2012, 100(19): 193502.
[42] Opaits D F, Likhanskii A V, Neretti G, et al. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias[J]. Journal of Applied Physics, 2008, 104(4): 043304.
[43] Kotsonis M, Ghaemi S. Performance improvement of plasma actuators using asymmetric high voltage waveforms[J]. Journal of Physics D: Applied Physics, 2012, 45(4): 045204.
[44] Benard N, Mizuno A, Moreau E. A large-scale multiple dielectric barrier discharge actuator based on an innovative three-electrode design[J]. Journal of Physics D: Applied Physics, 2009, 42(23): 235204.
[45] Moreau E, Sosa R, Artana G. Electric wind produced by surface plasma actuators: A new dielectric barrier discharge based on a three-electrode geometry[J]. Journal of Physics D: Applied Physics, 2008, 41(11): 115204.
[46] Durscher R, Roy S. Novel multi-barrier plasma actuator for increased thrust, AIAA-2010-0965[R]. Reston: AIAA, 2010.
[47] Erfani R, Erfani T, Utyuzhnikov S V, et al. Optimisation of multiple encapsulated electrode plasma actuator[J]. Aerospace Science and Technology, 2013, 26(1): 120-127.
[48] Hao J N, Tian B L, Wang Y L, et al. Dielectric barrier plasma dynamics for active aerodynamic flow control[J]. Science China: Physics, Mechanics & Astronomy, 2014, 57(2): 345-353.
[49] Durscher R, Roy S. Aerogel and ferroelectric dielectric materials for plasma actuators[J]. Journal of Physics D: Applied Physics, 2012, 45(1): 012001.
[50] Fine N E, Brickner S J. Plasma catalysis for enhanced-thrust single dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2010, 48(12): 2979-2982.
[51] Starikovskiy A, Tkach N, Post M, et al. Dielectric barrier discharge control and thrust enhancement by diode surface, AIAA-2014-0144[R]. Reston: AIAA, 2014.
[52] Santhanakrishnan A, Reasor D A, LeBeau R P. Characterization of linear plasma synthetic jet actuators in an initially quiescent medium[J]. Physics of Fluids, 2009, 21(4): 043602.
[53] Humble R A, Craig S A, Vadyak J, et al. Spatiotemporal structure of a millimetric annular dielectric barrier discharge plasma actuator[J]. Physics of Fluids, 2013, 25(1): 017103.
[54] Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1583-1589(in Chinese). 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589.
[55] Liu Z F, Wang L Z, Fu S. Study of flow induced by sine wave and saw tooth plasma actuators[J]. Science China: Physics, Mechanics & Astronomy, 2011, 54(11): 2033-2039.
[56] Riherd M, Roy S. Serpentine geometry plasma actuators for flow control[J]. Journal of Applied Physics, 2013, 114(8): 083303.
[57] Joussot R, Leroy A, Weber R, et al. Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode[J]. Journal of Physics D: Applied Physics, 2013: 46(12): 125204.
[58] Wu Y, Li Y H, Liang H, et al. Nanosecond pulsed discharge plasma actuation: characteristics and flow control performance, AIAA-2014-2118[R]. Reston: AIAA, 2014.
[59] Takashima K, Zuzeek Y, Lempert W R, et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses[J]. Plasma Sources Science and Technology, 2011, 20(5): 055009.
[60] Starikovskii A Y, Nikipelov A A, Nudnova M M, et al. SDBD plasma actuator with nanosecond pulse-periodic discharge[J]. Plasma Sources Science and Technology, 2009, 18(3): 034015.
[61] Benard N, Zouzou N, Claverie A, et al. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications[J]. Journal of Applied Physics, 2012, 111(3): 033303.
[62] Wu Y, Li Y H, Jia M, et al. Experimental investigation of the nanosecond discharge plasma aerodynamic actuation[J]. Chinese Physics B, 2012, 21(4): 045202.
[63] Wu Y, Li Y H, Jia M, et al. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma[J]. Journal of Applied Physics, 2013, 113(3): 033303.
[64] Benard N, Bayoda K D, Pai D Z, et al. Electrical and optical characteristics of pulsed dielectric barrier discharges under altitude conditions, AIAA-2014-0145[R]. Reston: AIAA, 2014.
[65] Zhao Z, Li J, Zheng J, et al. Study of shock and induced flow dynamics by pulsed nanosecond DBD plasma actuators, AIAA-2014-0402[R]. Reston: AIAA, 2014.
[66] Dawson R A, Little J. Effects of pulse polarity on nanosecond pulse driven dielectric barrier discharge plasma actuators[J]. Journal of Applied Physics, 2014, 115(4): 043306.
[67] Gaitonde D V, McCrink M H. A semi-empirical model of a nanosecond pulsed plasma actuator for flow control simulations with LES, AIAA-2012-0184[R]. Reston: AIAA, 2012.
[68] Popov N A. Fast gas heating initiated by pulsed nanosecond discharge in atmospheric pressure air, AIAA-2013-1052[R]. Reston: AIAA, 2013.
[69] Popov N A. Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285201.
[70] Mintoussov E I, Pendleton S J, Gerbault F G, et al. Fast gas heating in a nitrogen-oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285202.
[71] Flitti A, Pancheshnyi S. Gas heating in fast pulsed discharges in N2-O2 mixtures[J]. The European Physical Journal Applied Physics, 2009, 45: 21001.
[72] Takashima K, Yin Z, Adamovich I V. Measurements and kinetic modeling of energy coupling in volume and surface nanosecond pulse discharges[J]. Plasma Sources Science and Technology, 2013, 22(1): 015013.
[73] Zheng J G, Zhao Z J, Li J, et al. Numerical simulation of nanosecond pulsed dielectric barrier discharge actuator in a quiescent flow[J]. Physics of Fluids, 2014, 26(3): 036102.
[74] Poggie J, Adamovich I, Bisek N, et al. Numerical simulation of nanosecond-pulse electrical discharges[J]. Plasma Sources Science and Technology, 2013, 22(1): 015001.
[75] Bak M S, Capplelli M A. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air[J]. Journal of Applied Physics, 2013, 113(11): 113301.
[76] Likhanskii A V, Shneider M N. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses[J]. Physics of Plasmas, 2007, 14(7): 073501.
[77] Unfer T, Boeuf J P. Modelling of a nanosecond surface discharge actutator[J]. Journal of Physics D: Applied Physics, 2009, 42(19): 194017.
[78] Che X K, Shao T, Nie W S, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D: Applied Physics, 2012, 45(14): 145201.
[79] Zhu Y F, Wu Y, Cui W, et al. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge[J]. Journal of Physics D: Applied Physics, 2013, 46(35): 355205.
[80] Dedrick J, Boswell R W, Charles C. Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air[J]. Journal of Physics D: Applied Physics, 2010, 43(34): 342001.
[81] Dedrick J, Im S, Cappelli M A, et al. Surface discharge plasma actuator driven by a pulsed 13.56 MHz-5 kHz voltage waveform[J]. Journal of Physics D: Applied Physics, 2013, 46(40): 405201.
[82] Jin D, Li Y H, Jia M, et al. Investigation on the shockwave induced by surface arc plasma in quiescent air[J]. Chinese Physics B, 2014, 23(3): 035201.
[83] Elias P Q, Castera P. Measurement of the impulse produced by a pulsed surface discharge actuator in air[J]. Journal of Physics D: Applied Physics, 2013, 46(36): 365204.
[84] Leonov S B, Yarantsev D A. Near-surface electrical discharge in supersonic airflow: properties and flow control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181.
[85] Li Y H, Wang J, Wang C, et al. Properties of surface arc discharge in a supersonic airflow[J]. Plasma Sources Science and Technology, 2010, 19(2): 025016.
[86] Samimy M, Adamovich I, Webb B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiments in Fluids, 2004, 37(4): 577-588.
[87] Kim J H, Nishihara M, Adamovich I V, et al. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control[J]. Experiments in Fluids, 2010, 49(2): 497-511 .
[88] Grossman K R, Cybyk B Z, Wie D M V. Sparkjet actuators for flow control, AIAA-2003-0057[R]. Reston: AIAA, 2003.
[89] Cybyk B Z, Simon D H, Land H B. Experimental characterization of a supersonic flow control actuator, AIAA-2006-0478[R]. Reston: AIAA, 2006.
[90] Haack S, Taylor T, Cybyk B Z. Experimental estimation of sparkJet efficiency, AIAA-2011-3997[R]. Reston: AIAA, 2011.
[91] Jia M, Liang H, Song H M, et al. Characteristic of the spark discharge plasma jet driven by nanosecond pulses[J]. High Voltage Engineering, 2011, 37(6): 1493-1498 (in Chinese). 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流的气动激励特性[J]. 高电压技术, 2011, 37(6): 1493-1498.
[92] Jin D, Li Y H, Jia M, et al. Experimental characterization of the plasma synthetic jet actuator[J]. Plasma Science and Technology, 2013, 15(10): 1033-1040.
[93] Reedy T M, Kale N V, Dutton J C, et al. Experimental characterization of a pulsed plasma jet[J]. AIAA Journal, 2013, 51(8): 2027-2031.
[94] Belinger A, Hardy P, Barricau P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator[J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365201.
[95] Belinger A, Hardy P, Gherardi N, et al. Influence of the spark discharge size on a plasma synthetic jet actuator[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2334-2335.
[96] Wang L, Xia Z, Luo Z, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4): 879-882.
[97] Narayanaswamy V, Raja L L, Clemens N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.
[98] Shin J. Characteristics of high speed electron-thermal jet activated by pulsed DC discharge[J]. Chinese Journal of Aeronautics, 2010, 23(5): 518-522.
[99] Cybyk B Z, Wilkerson J T, Simon D H. Enabling high-fidelity modeling of a high-speed flow control actuator array, AIAA-2006-8034[R]. Reston: AIAA, 2006.
[100] Wang L, Luo Z B, Xia Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12): 125207 (in Chinese). 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207.
/
〈 | 〉 |