ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Investigation of Airflow Allocation Inside High Pressure Turbine Rotor Blade
Received date: 2013-12-30
Revised date: 2014-06-06
Online published: 2014-09-19
Supported by
Foundation of Jiangsu Innovation Program for Graduate Education (KYLX_0307); the Fundamental Research Funds for the Central Universities
Conjugate heat transfer simulation is used to conduct investigations aiming at obtaining the cooling performance of the internal cooling structures of a certain turbine rotor blade in this paper. Effects of three different airflow allocation methods on the cooling effect of the blade are analyzed under the condition of the same total airflow. Subsequently, the cooling structure with the best cooling performance is chosen to discuss the influence of rotational speed on total inlet pressure and overall cooling effectiveness. The results show that Model B produces more reasonable airflow allocation, obtaining more uniform temperature distribution and higher overall cooling effectiveness. The cooling airflow deflects due to the existence of Coriolis force and centrifugal buoyancy force. The stagnation line located at the blade leading edge is forced to shift from pressure side to suction side with the increase of rotational speed and the film discharges are also changed with the rotational speed. The increasing rotational speed leads to an improvement on pressure surface cooling effectiveness and inversely a decrement on suction surface cooling effectiveness.
ZHU Xingdan , TAN Xiaoming , GUO Wen , ZHANG Jingzhou , WANG Yongming . Investigation of Airflow Allocation Inside High Pressure Turbine Rotor Blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3273 -3782 . DOI: 10.7527/S1000-6893.2014.0193
[1] Han J C, Dutta S, Ekkad S V. Gas turbine heat transfer and cooling technology[M]. New York: Taylor & Francis, 2000.
[2] Bunker R S. Gas turbine heat transfer: ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2): 193-201.
[3] Bunker R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer, 2005, 127(4): 441-453.
[4] Chambers A G, Gillespie R H. Enhancement of impingement cooling in a high cross flow channel using sharp impingement cooling holes, ASME Paper, GT2006-90612[R]. New York: ASME, 2006.
[5] Wang F M, Zhang J Z, Wang S F. Study of flow characteristics inside rectangular channel with different pin fins[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 37-41. (in Chinese)
王奉明, 张靖周, 王锁芳. 不同形状扰流柱矩形通道内流动特性研究[J]. 航空学报, 2007, 28(1): 37-41.
[6] Funazaki K, BinSalleh H. Extensive studies on internal and external heat transfer characteristics of integrated impingement cooling structure for HP turbines, ASME Paper, GT2008-50202[R]. New York: ASME, 2008.
[7] Liu C L, Zhu H R, Bai J T, et al. Experimental research on film cooling characteristics of converging-expanding hole rows on turbine blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 687-693. (in Chinese)
刘存良, 朱惠人, 白江涛, 等. 涡轮叶片上收缩-扩张形孔排的全气膜冷却特性[J]. 航空学报, 2010, 31(4): 687-693.
[8] Yao Y, Zhang J Z, He F, et al. Numerical investigation on film cooling effectiveness of converging slot hole at turbine blade suction surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1115-1120. (in Chinese)
姚玉, 张靖周, 何飞, 等. 涡轮叶片吸力面上收敛缝形孔气膜冷却效率的数值研究[J]. 航空学报, 2010, 31(6): 1115-1120.
[9] Deng H W, Gu Z P, Zhu J Q, et al. Experiments of impingement heat transfer with film extraction flow on the leading edge of rotating blades[J]. International Journal of Heat and Mass Transfer, 2012, 55(21-22): 5425-5435.
[10] Yao Y, Zhang J Z, Tan X M. Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J]. International Communications in Heat and Mass Transfer, 2014, 52: 61-72.
[11] Nakamata C, Mimura F, Mastushita M, et al. Local cooling effectiveness distribution of an integrated impingement and pin fin cooling configuration, ASME Paper, GT2007-27020[R]. New York: ASME, 2007.
[12] Ieronymidis I, Gillespie R H, Ireland P T, et al. Detailed heat transfer measurements in a model of an integrally cast cooling passage[J]. Journal of Turbomachinery, 2010, 132(2): 021002.
[13] Li X, Mao J K, Wang X P, et al. Experiments on heat transfer enhancement with vortex in a double-decker jet/film cooling structure[J]. Journal of Propulsion Technology, 2010, 31(3): 325-330. (in Chinese)
李鑫, 毛军逵, 王小平, 等. 双层壳型涡轮叶片中冲击旋流换热增益效果试验[J]. 推进技术, 2010, 31(3): 325-330.
[14] Dees J E, Bogard D G, Ledezma G A, et al. Experimental measurements and computational predictions for an integrally cooled simulated turbine vane[J]. Journal of Turbomachinery, 2012, 134(6): 061003.
[15] Guo W, Ji H H, Cai Y, et al. Optimum design approach for internal cooling structure in turbine blades[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2006, 38(4): 408-412. (in Chinese)
郭文, 吉洪湖, 蔡毅, 等. 高压涡轮动叶内部冷却结构的改进设计[J]. 南京航空航天大学学报, 2006, 38(4): 408-412.
[16] Bohn D, Heuer T. Conjugate flow and heat transfer calculation of a high pressure turbine nozzle guide vane, AIAA-2001-3304[R]. Reston: AIAA, 2001.
[17] York W D, Leylek J H. Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane, ASME Paper, GT2003-38551[KG-*2][R]. New York: ASME, 2003.
[18] Zhang L F, Liu Z X, Lian X C. Numerical study of 3D heat transfer for turbine blade with air cooling[J]. Journal of Aerospace Power, 2007, 22(8): 1268-1272. (in Chinese)
张丽芬, 刘振侠, 廉筱纯. 气冷涡轮叶片三维换热问题计算[J]. 航空动力学报, 2007, 22(8): 1268-1272.
[19] Su S, Liu J J, An B T. Numerical simulation of conjugate heat transfer for an internally cooled 3-D turbine blade[J]. Journal of Aerospace Power, 2007, 22(12): 2018-2024. (in Chinese)
苏生, 刘建军, 安柏涛. 内冷涡轮叶栅三维气热耦合数值模拟[J]. 航空动力学报, 2007, 22(12): 2018-2024.
[20] Mangani L, Cerutti M, Maritano M, et al. Conjugate heat transfer analysis of NASA C3X film cooled vane with an object-oriented CFD code, ASME Paper, GT2010-23458[R]. New York: ASME, 2010.
[21] Sleiti A K, Kapat J S. Effect of Coriolis and centrifugal forces on turbulence and transport at high rotation and density ratios in a rib-roughened channel[J]. International Journal of Thermal Sciences, 2008, 47(5): 609-619.
[22] Harrison K, Bogard D. Comparison of RANS turbulence models for prediction of film cooling performance, ASME Paper, GT2008-50366[R]. New York: ASME, 2008.
[23] Silieti M, Kassab A J, Divo E. Film cooling effectiveness: comparison of adiabatic and conjugate heat transfer CFD models[J]. International Journal of Thermal Science, 2009, 48(12): 2237-2248.
[24] Wang L P, Zhang J Z, Yao Y. Numerical investigation on temperature distribution of an air-cooled and thermal barrier coating blade[J]. Journal of Aerospace Power, 2012, 27(2): 357-364. (in Chinese)
王利平, 张靖周, 姚玉. 敷设热障涂层气冷叶片温度分布数值研究[J]. 航空动力学报, 2012, 27(2): 357-364.
王利平, 张靖周, 姚玉. 敷设热障涂层气冷叶片温度分布数值研究[J]. 航空动力学报, 2012, 27(2): 357-364.
[25] Singh D, Premachandran B, Kohli S. Experimental and numerical investigation of jet impingement cooling of a circular cylinder[J]. International Journal of Heat and Mass Transfer, 2013, 60: 672-688.
[26] Turner E R, Wilson M D, Hylton L D, et al. Analytical and experimental evaluation of surface heat transfer distributions with leading edge showerhead film cooling, NASA-CR-174827[R]. Washington, D.C.: NASA, 1985.
/
〈 | 〉 |