ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Analysis of nonlinear panel flutter
Received date: 2014-07-10
Revised date: 2014-09-02
Online published: 2014-09-17
Supported by
National Natural Science Foundation of China (11202165); Astronautic Technology Innovation Foundation; Astronautic Support Technology Foundation
Nonlinear panel flutter caused by the interaction between nonlinear fluid and geometrically nonlinear structure is studied by an improved computational fluid dynamics and computatienal structural dynamics (CFD/CSD) coupled program. A flux splitting scheme combined with implicit time marching technology and geometric conservation law is utilized to solve unsteady aerodynamic pressure; the finite element corotational theory is applied to modeling the geometric nonlinear two-dimensional and three-dimensional panels, and an approximate energy conservation algorithm is developed to obtain nonlinear structure response. The two solvers are connected by a second-order loosely coupled method and applied to the solution of panel flutter problems for supersonic, transonic and subsonic Mach numbers. A representative limited cycle oscillation appears when geometric nonlinearity and aerodynamic nonlinearity are considered. The flutter boundary and amplitude of limit cycle oscillation are discussed.
AN Xiaomin , XU Wei , XU Min . Analysis of nonlinear panel flutter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1119 -1127 . DOI: 10.7527/S1000-6893.2014.0221
[1] Joseph D B, Hong L, Eric L M, et al. Recent developments of a coupled CFD/CSD methodology, AIAA-2001-31097[R]. Reston: AIAA, 2001.
[2] Gordnier R E, Fithen R. Coupling of a nonlinear finite element structural method with a Navier-Stokes solver[J]. Computers and Structures, 2003, 81(2): 75-89.
[3] Dowell E H. Panel flutter: a review of the aeroelastic stability of plates and shells[J]. AIAA Journal, 1970, 8(3): 385-399.
[4] Dowell E H, Thomas J P , Hall K C. Transonic limit cycle oscillation analysis using reduced order aerodynamic models, AIAA-2001-1212[R]. Reston: AIAA, 2001.
[5] Gordnier R E, Visbal M R. Computation of the aeroelastic response of a flexible delta wing at high angles of attack[J]. Journal of Fluids and Structures, 2004, 19(6):785-800.
[6] Mei C. A finite-element approach for nonlinear panel flutter[J]. AIAA Journal, 1977, 15(8): 1107-1110.
[7] Attar P J, Gordnier R E. Aeroelastic prediction of the limit cycle oscillations of a cropped delta wing[R]. AIAA-2005-1915[R]. Reston: AIAA, 2005.
[8] Xia W, Ni Q, Yang Z C. Compare of time domain method with frequency domain method in nonlinear flutter analysis for panels of supersonic airplane[J]. Chinese Journal of Solid Mechanics, 2010, 31(4): 417-421(in Chinese). 夏巍, 倪樵, 杨智春. 超声速飞行器壁板非线性颤振响应分析的时域法与频域法对比研究[J]. 固体力学学报,2010, 31(4): 417-421.
[9] Yang Z C, Zhou J, Gu Y S. Nonlinear thermal flutter of heated curved panels in supersonic air flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 30-38(in Chinese). 杨智春, 周建, 谷迎松. 超音速气流中受热曲壁板的非线性颤振特性[J]. 力学学报, 2012, 44(1): 30-38.
[10] Li L L, Zhao Y H. The flutter analysis of thermal panel under supersonic flow[J]. Journal of Dynamics and Control, 2012, 10(1): 67-70(in Chinese). 李丽丽, 赵永辉. 超音速下热壁板的颤振分析[J] . 动力学与控制学报, 2012, 10(1): 67-70.
[11] Yang C, Li G S, Wan Z Q. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter[J]. Science China Technological Sciences, 2012, 42(4): 369-377(in Chinese). 杨超, 李国曙, 万志强. 气动热-气动弹性双向耦合的高超声速曲面壁板颤振分析方法[J]. 中国科学: 技术科学, 2012, 42(4): 369-377.
[12] Crisfield M A. A unified co-rotational framework for solids, shells and beams[J]. Journal of Solids Structures, 1996, 33(20-22): 2969-2992.
[13] Battini J M. Co-rotational beam elements in instability problems[R]. Stockholm, Sweden: Technical Reports from Royal Institute of Technology Department of Mechanics, 2002.
[14] Pacoste C. Co-rotational flat facet triangular elements for shell instability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 156(1-4): 75-110.
[15] Galvaneito U, Crisfield M A. An energy-conserving co-rotational procedure for the dynamics of planar beam structures[J]. International Journal for Numerical Methods in Engineering , 1996, 39(13): 2265-2282.
[16] Relvas A, Suleman A. Application of the corotational structural kinematics and Euler flow to two-dimensional nonlinear aeroelasticity[J]. Computers and Structures, 2007, 85(17-18): 1372-1381.
[17] An X M, Xu M, Chen S L. An approximate energy conservation algorithm for shell structure based on co-rotational (CR) theory[J]. Journal of Northwestern Polytechnical University, 2011, 29(2): 205-211(in Chinese). 安效民, 徐敏, 陈士橹. 基于CR理论的近似能量守恒算法在壳元中的应用[J]. 西北工业大学学报, 2011, 29(2):205-211.
[18] Yao W G, Xu M. Modified AUSMpw+ scheme and its application[C]// The 7th International Conference on System Simulation and Scientific Computing. Beijing: ICSC, 2008: 740-743.
[19] Farhat C. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18):1973-2001.
[20] Zhang W W, Gao C Q, Ye Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (2): 303-319 (in Chinese). 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319.
[21] Xie L, Xu M, An X M, et al. Research of mesh deforming method based on radial basis functions and nonlinear aeroelastic simulaiton[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1501-1511(in Chinese). 谢亮, 徐敏, 安效民, 等. 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报, 2013, 34(7): 1501-1511.
/
〈 | 〉 |