ACTA AERONAUTICAET ASTRONAUTICA SINICA >
More fidelity, more accurate, more efficient—progress on numerical simulations for hypersonic flow
Received date: 2014-07-25
Revised date: 2014-09-15
Online published: 2014-09-16
Supported by
National Nature Science Foundation of China (11372342)
The progress of numerical simulations capability, which is related to fidelity, accuracy and efficiency, for prediction of hypersonic flow during the last several decades are reviewed. For physical modeling, the current status of modeling and simulation about high-temperature gas effects, rarefied gas effects and turbulence effects in hypersonic flow simulations is reviewed. And great emphasis is placed on hypersonic boundary layer transition modeling based on Reynolds-averaged Navier-Stokes (RANS) equations. For spatial discretization schemes, a review of development and application for usual 2nd order upwind schemes and high-order schemes are given. For time marching schemes, development and application for implicit time marching schemes is briefly summarized. For uncertainty quantification, a review of its concept, source and analysis method is firstly addressed, and then the primitive results of iterative error estimation, spatial discretization error analyses using Richardson extrapolation and uncertainty quantification using sensitivity derivatives are also presented. At last, some possible future directions on numerical simulations for hypersonic flow are discussed.
Key words: hypersonic flow; numerical simulation; physical modeling; numerical method; error; uncertainty
TANG Zhigong , ZHANG Yirong , CHEN Jianqiang , MAO Meiliang , ZHANG Yifeng , LIU Huayong . More fidelity, more accurate, more efficient—progress on numerical simulations for hypersonic flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 120 -134 . DOI: 10.7527/S1000-6893.2014.0231
[1] Guo J.Military application value of near space vehicle[J].OME Information, 2010, 27(8): 22-27 (in Chinese). 郭劲. 临近空间飞行器军事应用价值分析[J].光机电信息, 2010, 27(8): 22-27.
[2] Knight D.RTO WG 10: test cases for CFD validation of hypersonic flight, AIAA-2002-0433[R].Reston: AIAA, 2002.
[3] Saric W S, Muylaert J, Dujarric C.Hypersonic experimental and computational capability, improvement and validation, AGARD-AR-319[R].Hull (Québec): North Atlantic Treaty Organisation, 1996.
[4] Slotnick J, Khodadoust A, Alonso J.CFD vision 2030 study: a path to revolutionary computational aerosciences, NASA/CR-2014-218178[R].Washington, D.C.: NASA, 2014.
[5] Sarma G S R.Physico-chemical modeling in hypersonic flow simulation[J].Progress in Aerospace Sciences, 2000, 36(3-4): 281-349.
[6] Li Z H, Zhang H X.Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J].Acta Aerodynamica Sinica, 2003, 21(3): 255-266 (in Chinese). 李志辉, 张涵信. 稀薄流到连续流的气体运动论统一算法研究[J]. 空气动力学学报, 2003, 21(3): 255-266.
[7] Park C.Nonequilibrium hypersonic aerothermodynamics[M]. New York: John Wiley & Sons Inc., 1989.
[8] Prabhu D K, Papadopoulos P E, Davies C B, et al. Shuttle orbiter contingency abort aerodynamics: real-gas effects and high angles of attack, RTO-EN-AVT-116[R].Rhode St.Genèse, Belgium: von Kármán Institute, 2004.
[9] Smits A J, Martin M P, Girimaji S. Current status of basic research in hypersonic turbulence, AIAA-2009-0151[R]. Reston: AIAA, 2009.
[10] Wilkinson S P.A review of hypersonic boundary layer stability experiments in a quiet Mach 6 wind tunnel, AIAA-1997-1819[R]. Reston: AIAA, 1997.
[11] Abney A, Ward C, Berridge D, et al.Hypersonic boundary-layer transition experiments in the Boeing/AFOSR Mach-6 quiet tunnel, AIAA-2013-0375[R].Reston: AIAA, 2013.
[12] Bi Z X, Zhu N J, Shen Q, et al.Measurements on transition of hypersonic boundary layer over circular cone, AIAA-2007-6728[R].Reston: AIAA, 2007.
[13] Holden M S, Wadhams T P, MacLean M, et al.Review of studies of boundary layer transition in hypersonic flows over axisymmetric and elliptic cones conducted in the CUBRC shock tunnels, AIAA-2009-0782[R]. Reston: AIAA, 2009.
[14] Gronvall J E, Johnson H B, Candler G V.Hypersonic three-dimensional boundary layer transition on a cone at angle of attack, AIAA-2012-2822[R]. Reston: AIAA, 2012.
[15] McDaniel R D, Nantie R P, Hassan H A.Transition onset prediction for high speed flow, AIAA-1999-3792[R].Reston: AIAA, 1999.
[16] McDaniel R D, Hassan H A.Role of bypass transition in conventional hypersonic facilities, AIAA-2001-0209[R].Reston: AIAA, 2001.
[17] Xiao X, Edwards J R, Hassan H A.Transition flow over an elliptic cone at Mach 8, AIAA-2001-0276[R]. Reston: AIAA, 2001.
[18] Papp J L, Dash S M. Extensions of a rapid engineering approach to modeling hypersonic laminar-to-turbulent transitional flows, AIAA-2005-0892[R].Reston: AIAA, 2005.
[19] Papp J L, Dash S M.Modeling hypersonic laminar to turbulent transitional flows for 3D geometries using two-equation onset and intermittency transport models, AIAA-2012-0449[R].Reston: AIAA, 2012.
[20] Fu S, Wang L.Numerical simulation of hypersonic boundary layer transition using RANS[J].Science China: G, 2009, 39(4): 617-626 (in Chinese). 符松, 王亮. 基于雷诺平均方法的高超音速边界层转捩模拟[J].中国科学: G辑, 2009, 39(4): 617-626.
[21] Song B, Li C H.A Favré averaged transition prediction model for hypersonic flows[J].Science China Technology Science, 2010, 40(8): 879-885 (in Chinese). 宋博, 李椿萱.基于Favré平均的高超声速可压缩转捩预测模型[J].中国科学: 技术科学, 2010, 40(8): 879-885.
[22] Menter F R, Esch T, Kubacki S.Transition modelling based on local variables[C]//Proceedings of the 5th International Symposium on Engineering Turbulence Modelling and Measurements.Amsterdam: Elsevier, 2002: 555-564.
[23] Menter F R, Langtry R B, Likki S R, et al.A correlation-based transition model using local variables, Part I: model formulation[J].Journal of Turbomachinery, 2004, 128(3): 413-422.
[24] Langtry R B.A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: Institut für Thermische Strmungsmachinen und Maschinenlaboratorium, 2006.
[25] Langtry R B, Menter F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamic codes[J].AIAA Journal, 2009, 47(12): 2894-2906.
[26] Malan P, Suluksna K, Juntasaro E.Calibrating the γ-Reθ transition model for commercial CFD, AIAA-2009-1142 [R].Reston: AIAA, 2009.
[27] Medida S, Baeder J D.Application of the correlation-based γ-Reθ t transition model to the Spalart-Allmaras turbulence model, AIAA-2011-3979[R].Reston: AIAA, 2011.
[28] Krause M, Behr M, Ballmann J.Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model, AIAA-2008-2598[R].Reston: AIAA, 2008.
[29] Bensassi K, Lani A, Rambaud P.Numerical investigations of local correlation-based transition model in hypersonic flows, AIAA-2012-3151[R].Reston: AIAA, 2012.
[30] Zhang X D, Gao Z H.Numerical discuss to complete empirical correlation in Langtry's transition model[J].Applied Mathematics and Mechanics, 2010, 31(5): 544-552(in Chinese). 张晓东, 高正红.关于补充Langtry的转捩模型经验修正式的数值探讨[J].应用数学和力学, 2010, 31(5): 544-552.
[31] Yan P, Mao R, Qiang X.Application of PSE analysis method with transitional turbulence model on hypersonic flows, AIAA-2011-3981[R].Reston: AIAA, 2011.
[32] Yan C, Zhang Z, Zhang L X, et al.Characteristic analysis of the upwind scheme[J].Acta Aerodynamica Sinica, 2003, 21(3): 336-341 (in Chinese). 阎超, 张智, 张立新, 等.上风格式的若干性能分析[J].空气动力学学报, 2003, 21(3): 336-341.
[33] Godunov S K.A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations[J].Matematicheskii Sbornik, 1959, 47(89): 271-306.
[34] van Leer B.Towards the ultimate conservation difference scheme V: a second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1): 101-136.
[35] Steger J L, Warming R F.Flux vector splitting of the inviscid gasdynamics equations with application to finite difference methods[J].Journal of Computational Physics, 1981, 40(2): 263-293.
[36] van Leer B.Flux vector splitting for Euler equations[C]//Eighth International Conference on Numerical Methods in Fluid Dynamics.Berlin: Springer Heidelberg, 1982: 507-512.
[37] Roe P L.Approximate Riemann solvers, parameter vectors and difference schemes[J].Journal of Computational Physics, 1981, 43(2): 357-372.
[38] Osher S, Solomon F.Upwind difference schemes for hyperbolic conservation laws[J].Mathematics of Computation, 1982, 38(158): 339-374.
[39] Knight D, Longo J, Drikakis D, et al.Assessment of CFD capability for prediction of hypersonic shock interactions[J].Progress in Aerospace Sciences, 2012, 48-49: 8-26.
[40] Liou M S, Steffen C J.A new flux splitting scheme[J].Journal of Computational Physics, 1993, 107(1): 23-39.
[41] Kitamura K, Shima E.A new pressure flux for AUSM-family schemes for hypersonic heating computations, AIAA-2011-3056[R].Reston: AIAA, 2011.
[42] Harten A.High resolution schemes for hypersonic conservation laws[J].Journal of Computational Physics, 1983, 49(3): 357-393.
[43] Li S B.Dissipation conservative scheme theory[M].Beijing: Higher Education Press, 1997: 1 (in Chinese). 李松波.耗散守恒格式理论[M].北京: 高等教育出版社, 1997: 1.
[44] Zhang H X.None-oscillation, none free coefficients dissipative finite difference scheme[J].Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese). 张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报, 1988, 6(2): 143-165.
[45] Chen J Q, Jiang D W, Zhang Y F.The study on the precision of numerical simulation for lateral jets flow and the experiment validation[J].Acta Aerodynamica Sinica, 2010, 28(4): 421-425 (in Chinese). 陈坚强, 江定武, 张毅锋.侧向喷流数值模拟精度及实验验证研究[J].空气动力学学报, 2010, 28(4): 421-425.
[46] Mao M L, Jiang D W, Deng X G.Study of hybrid scheme for the prediction of aerodynamic heat transfer-rate in hypersonic laminar flow[J].Acta Aerodynamica Sinica, 2009, 27(3): 275-280 (in Chinese). 毛枚良, 江定武, 邓小刚.高超声速层流气动热预测混合算法研究[J].空气动力学学报, 2009, 27(3): 275-280.
[47] Harten A, Engquist B, Osher S, et al.Uniformly high-order accurate essentially non-oscillatory schemes III[J].Journal of Computational Physics, 1987, 71(2): 231-303.
[48] Stiriba Y.A nonlinear flux split method for hyperbolic conservation laws[J].Journal of Computational Physics, 2002, 176(1): 20-39.
[49] Liu X D, Osher S, Chan T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1): 200-212.
[50] Shu C W.Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253[R].Washington, D.C.: NASA, 1997.
[51] Lin S Y, Hu J J.Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics[J]. AIAA Journal, 2001, 39(3): 371-379.
[52] Li X L, Fu D X, Ma Y W.Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J].Physics of Fluids, 2010, 22(2): 025105-025105-18.
[53] Fu D X.Fluid dynamics numerical simulation[M].Beijing: National Defense Industry Press, 1993: 235-249 (in Chinese). 傅德薰.流体力学数值模拟[M].北京: 国防工业出版社, 1993: 235-249.
[54] He G H.Third-order ENN scheme and its application to the calculation of complex hypersonic viscous flows[D].Mianyang: China Aerodynamics Research and Development Center, 1994 (in Chinese). 贺国宏. 三阶ENN格式及其在高超声速黏性复杂流场求解中的应用[D].绵阳:中国空气动力研究与发展中心, 1994.
[55] Li Q, Zhang H X, Gao S C.Numerical simulations on supersonic shear layer flow[J].Acta Aerodynamica Sinica, 2000, 18(1): 67-77 (in Chinese). 李沁, 张涵信, 高树椿.关于超声速剪切流动的数值模拟[J]. 空气动力学学报, 2000, 18(1): 67-77.
[56] Deng X G, Zhang H X.Developing high-order accurate nonlinear schemes[J].Journal of Computational Physics, 2000, 165(1): 22-44.
[57] Deng X G, Mao M L, Liu J C.High-order dissipative weighted compact nonlinear schemes for Euler and Navier-Stokes equations, AIAA-2001-2626[R].Reston: AIAA, 2001.
[58] Ren Y X, Liu M, Zhang H X.A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J].Journal of Computational Physics, 2003, 192(2): 365-386.
[59] Ren Y X.A robust shock-capturing scheme based on rotated Riemann solvers[J].Computers & Fluids, 2003, 32(10): 1379-1403.
[60] Zheng H S, Zhao N, Cheng J.One dimensional high order accurate discontinuous GDQ methods[J].Mathematica Numerica Sinica, 2004, 26(3): 293-302 (in Chinese). 郑华盛, 赵宁, 成娟.一维高精度离散GDQ方法[J].计算数学, 2004, 26(3): 293-302.
[61] Zheng H S, Zhao N.A high order accurate TVD difference scheme for hyperbolic conservation laws[J].Chinese Journal of Computational Physics, 2005, 22(1): 13-18 (in Chinese). 郑华盛, 赵宁.双曲型守恒律的一种高精度TVD差分格式[J].计算物理, 2005, 22(1): 13-18.
[62] Zheng H S, Zhao N.A high order accurate MmB difference scheme for nonlinear hyperbolic conservation laws[J]. Chinese Journal of Computational Mechanics, 2006, 23(2): 218-222 (in Chinese). 郑华盛, 赵宁.非线性双曲型守恒律的高精度MmB差分格式[J].计算力学学报, 2006, 23(2): 218-222.
[63] Walpot L.Numerical analysis of the ARD capsule in S4 wind tunnel[C]//4th European Symposium on Aerothermodynamics for Space Vehicles, Capua.Italy: European Space Agency, 2001.
[64] Dennis J E, Schnabel R B.Numerical methods for unconstrained optimization and nonlinear equations[M].Englewood Cliffs, NJ: Prentice-Hall, 1983: 2-14.
[65] Tysinger T L, Caughey D A.Implicit multigrid algorithm for the Navier-Stokes equations[C]//29th Aerospace Sciences Meeting.Reno, NV: AIAA, 1991.
[66] Hixon R, Visbal M R.Comparison of high-order implicit time marching schemes for unsteady flow calculations, AIAA-2007-4324[R].Reston: AIAA, 2007.
[67] Rizzetta D P, Visbal M R, Blaisdell G A.A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation[J].International Journal for Numerical Methods in Fluids, 2003, 42(6): 666-693.
[68] Whitfield D L, Taylor L K.Discretized Newton-relaxation solution of high resolution flux-difference split schemes, AIAA-1991-1539[R]. Peston: AIAA, 1991.
[69] Yoon S, Jameson A.Lower-upper symmetric gauss-serdel method for the Euler and Navier-Stokes equations[J].AIAA Journal, 1988, 26(9): 1025-1026.
[70] Chen R F, Wang Z J.Fast, block lower-upper symmetric Gauss-Seidel scheme for Arbitrary grids[J].AIAA Journal, 2000, 38(12): 2238-2245.
[71] Jameson A, Caughey D A.How many steps arerequired to solve the Euler equations of steady, compressibleflow: in search of a fast solution algorithm, AIAA-2001-2673[R].Reston: AIAA, 2001.
[72] Pareschi L, Russo G.Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[J].Journal of Scientific Computing, 2005, 25(1): 129-155.
[73] Gottlieb S, Mullen J S.An implicit WENO scheme for steady-state computation of scalar hyperbolic equations[J]. Computational Fluid and Solid Mechanics, 2003, 1(2): 1946-1950.
[74] Zhong X. Direct numerical simulation of hypersonic boundary-layer transition over blunt leading edges, Part I: a new numerical method and validation, AIAA-1997-0755[R]. Reston: AIAA, 1997.
[75] Ekaterinaris J A.Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics[J].Journal of Computational Physics, 1999, 156(2): 272-299.
[76] Zhang Y F. Investigations of convergence acceleration and complex flow numerical simulation for high-order accurate scheme(WCNS)[D]. Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese). 张毅锋.高精度格式(WCNS)加速收敛和复杂流动数值模拟的应用研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.
[77] Buelow P E O, Venkateswaran S, Merkle C L.Stability and convergence analysis of implicit upwind schemes[J].Computers & Fluids, 2001, 30(7-8): 961-988.
[78] Chisholm T T, Zingg D W.A Jacobian-free Newton-Krylov algorithm for compressible turbulent flows[J]. Journal of Computational Physics, 2009, 228(9): 3490-3507.
[79] AIAA.Guide for the verification and validation of computational fluid dynamics simulations, AIAA-G-077-1998[R].Reston: AIAA, 1998.
[80] Oberkampf W L, Roy C J.Verification and validation in scientific computing[M].New York: Cambridge University Press, 2010: 19-143.
[81] Zhang H X.On the uncertainty about CFD result[J].Acta Aerodynamica Sinica, 2008, 26(1): 47-49 (in Chinese). 张涵信.关于CFD计算结果的不确定度问题[J].空气动力学学报, 2008, 26(1): 47-49.
[82] Champion K S W.Middle atmosphere density data and comparison with models[J].Advances in Space Research, 1990, 10(6): 17-26.
[83] Ea L, Hoekstra M.Code verification and verification of calculations with RANS solvers, RTO-MP-AVT-147-P-07[R].New Jersey: North Atlantic Treaty Orgnisation, 2010.
[84] Zhang X D, Pelletier D, Trépanier J Y, et al.Numerical assessment of error estimators for Euler equations[J].AIAA Journal, 2001, 39(9): 1706-1715.
[85] Qin Y.A discrete transport equation for error estimation in CFD, AIAA-2002-0906R].Reston: AIAA, 2002.
[86] Celik I, Li J.Assessment of numerical uncertainty for the calculations of turbulent flow over a backward facing step[J].International Journal for Numerical Methods in Fluids, 2005, 49(9): 1015-1031.
[87] Roy C J.Grid convergence error analysis for mixed-order numerical schemes, AIAA-2001-2606[R].Reston: AIAA, 2001.
[88] Chen J Q, Zhang Y R.Verification and validation in CFD based on the Richardson extrapolation method[J].Acta Aerodynamica Sinica, 2012, 30(2): 176-183 (in Chinese). 陈坚强, 张益荣.基于Richardson插值法的CFD验证和确认方法的研究[J].空气动力学学报, 2012, 30(2): 176-183.
[89] Oberkampf W L, Trucano T G.Validation methodology in computational fluid dynamics, AIAA-2002-2549[R].Reston: AIAA, 2002.
[90] Perez R A.Uncertainty analysis of computational fluid dynamics via polynomial chaos[D].Blacksburg: Viginia Polytechnic Institute and State University, 2008.
[91] Walters R W, Huyse L.Uncertainty analysis for fluid mechaics with applications, NASA/CR-2002-211449[R].Washington, D.C.: NASA, 2002.
/
〈 | 〉 |