Solid Mechanics and Vehicle Conceptual Design

Physical mechanism investigation of coaxial helicopter ground resonance

  • HU Guocai ,
  • LIU Xiangyi ,
  • LIU Shuyan ,
  • WANG Yunliang
Expand
  • Department of Airborne Vehicle Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2014-06-09

  Revised date: 2014-07-14

  Online published: 2014-09-05

Supported by

Aeronautical Science Foundation of China (20145784010)

Abstract

In order to understand the coupling interaction between upper/lower rotor and fuselage of coaxial helicopter, a time-frequency analytical method is presented to analyze physical mechanism of coaxial helicopter ground resonance. An analytical model for coaxial articulated rotor helicopter ground resonance with structural damping is established, considering periodic lag motion DOFs (upper rotor and lower rotor), body pitch rotation DOF and body roll rotation DOF. Eigenvalue calculation and numerical integration of disturbance equations of motions are used to obtain modal characteristics and time-domain response characteristics of coaxial helicopter ground resonance, and the interaction between rotors and body is revealed according to the response of various DOFs. The analytical results show that regressive lag mode with upper rotor characteristics is the most instability mode. In dynamic instability region, coaxial helicopter ground resonance is mainly due to energy transferred between periodic lag motion of upper rotor and body roll rotation. For this instability mode, energy transferred between periodic lag motion of lower rotor and body roll rotation also exists and it can enhance ground resonance instability of coaxial helicopter.

Cite this article

HU Guocai , LIU Xiangyi , LIU Shuyan , WANG Yunliang . Physical mechanism investigation of coaxial helicopter ground resonance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1848 -1857 . DOI: 10.7527/S1000-6893.2014.0183

References

[1] Coleman M L, Feingold A M. Theory of self-excited mechanical oscillation of helicopter rotor with hinged blades, NACA TR-1351[R]. Washington, D.C.: NACA, 1958.
[2] Zhang X G. Physical understanding of helicopter air and ground resonance[J]. Journal of the American Helicopter Society, 1986, 31(4): 4-11.
[3] Burkam J E, Miao W L. Exploration of aeroelastic stability boundries with a soft-in-plane hingeless rotor model[J]. Journal of the American Helicopter Society, 1972, 17(4): 27-35.
[4] Ormiston R A. Rotor-fuselage dynamics of helicopter air and ground resonance[J]. Journal of the American Helicopter Society, 1991, 36(2): 3-20.
[5] Zhang X G. The influence of main design parameters on helicopter air resonance and its source of instability[C]//ICAS-92-6.4R. Beijing: ICAS, 1992: 869-878.
[6] Tongue B H, Flowers G T. Non-linear rotorcraft analysis[J]. International Journal Non-linear Mechanics, 1988, 23(3): 189-203.
[7] Tang D M, Dowell E H. Influence of nonlinear blade damping on helicopter ground resonance stability[J]. Journal of Aircraft, 1986, 23(2): 104-110.
[8] Smith E C, Govindswamy K, Beale M R, et al. Aeroelastic response and stability of helicopters with elastomeric lag damper[J]. Journal of the American Helicopter Society, 1996, 43(3): 257-266.
[9] Sahasrabudhe V, Gold P J. Reducing rotor-body coupling using active control[C]//Proceedings of the American Helicopter 60th Annual Forum. Washington, D.C.: AHS, 2004: 1818-1834.
[10] Zhao Y S, Choi Y T, Wereley N M. Semi-active damping of ground resonance in helicopter using magnetorheological dampers[J]. Journal of the American Helicopter Society, 2004, 49(4): 468-482.
[11] Bousman W G. An experimental investigation of the effects of aeroelastic couplings on aeromechanical stability of a hingeless rotor helicopter[J]. Journal of the American Helicopter Society, 1981, 26(1): 46-54.
[12] McNulty M I, Bousman W G. Integrated technology rotor methodology assessment workshop, CP-10007[R]. Washington, D.C.: NASA, 1988.
[13] Niebanck C, Girvan W. Sikorsky S-76 analysis, design, and development for successful dynamic characteristics[C]//The American Helicopter Society 34th Annual Forum Proceedings. Washington, D.C.: AHS, 1978: 23.1-23.17.
[14] Wang J M, Duh J, Fuh J. Stability of the Sikorsky S-76 bearingless main rotor[C]//Proceedings of the American Helicopter 49th Annual Forum. Washington, D.C.: AHS, 1993: 983-1009.
[15] Krysinski T, Ferullo D. Overview of the EC155 dynamics validation program from design stage up to certification[C]//Proceedings of the American Helicopter 55th Annual Forum. Washington, D.C.: AHS, 1999: 1056-1063.
[16] Narramore J M, Mithat Y. Bell 429 main rotor aerodynamic and dynamic development[C]//Proceedings of the American Helicopter 66th Annual Forum. Washington, D.C.: AHS, 2010: 436-452.
[17] Zhang X G, Liu Q. The application of complex coordinates and mutual excitation analysis to the investigation of helicopter ground resonance[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(11): 586-593 (in Chinese). 张晓谷, 刘强. 复数坐标及互激励分析在直升机"地面共振"分析中的应用[J]. 航空学报, 1992, 13(11): 586-593.
[18] Lu M, Fei B J, Ren Z Y, et al. A numerical analysis for the ground resonance of a two-blade helicopter rotor on anisotropic flexible supports[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(3): 348-354 (in Chinese). 陆萌, 费斌军, 任志勇, 等. 共轴(单轴)双桨叶直升机"地面共振"的数值分析[J]. 航空学报, 1995, 16(3): 348-354.

Outlines

/