Solid Mechanics and Vehicle Conceptual Design

Design and Optimization of Low Detectable Wing Structure Based on LHM

  • XU Hanle ,
  • ZHU Xiaoping ,
  • ZHOU Zhou ,
  • REN Wu
Expand
  • 1. Key Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Xi'an Aerospace Propulsion Institute, Xi'an 710100, China

Received date: 2014-06-24

  Revised date: 2014-08-05

  Online published: 2014-09-05

Supported by

The Ministry Level Project

Abstract

Low detectable wing structure can meet the aerodynamic, structure and stealth requirement of aircraft wing, but when it is applied to the wing with limited space, its stealth effect is restricted because of its structural characteristics. In order to solve this problem, left-handed material (LHM) is added in the traditional stealth structure in this paper. Firstly, from the viewpoint of stealth design, a typical LHM is selected to study its electromagnetic property by using the backward absorption rate which is calculated from its radar cross section (RCS) at different incidence angles. Then the LHM is used in the wing stealth structure according to its electromagnetic property. With the same RCS reduction effect, the application of LHM can effectively reduce the volume of the stealth structure. Finally, to further enhance the RCS reduction effect, a sandwich low detectable wing structure with LHM is put forward and the structure parameters are optimized by the surrogate model. The results show that the optimal structure RCS is reduced by 15 dB compared to the RCS of metal wing; it is reduced by more than 10 dB compared to the same wing structure without LHM.

Cite this article

XU Hanle , ZHU Xiaoping , ZHOU Zhou , REN Wu . Design and Optimization of Low Detectable Wing Structure Based on LHM[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3331 -3340 . DOI: 10.7527/S1000-6893.2014.0176

References

[1] Landy N I, Sajuyigbe S, Mock J J, et al. A perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100 (20): 207402.

[2] Lu L, Qu S B, Xia S, et al. Simulation and experiment demonstration of polarization-independent dual-directional absorption metamaterial absorber[J]. Acta Physica Sinica, 2013, 62(1): 169-174. (in Chinese) 鲁磊, 屈绍波, 夏颂, 等. 极化无关双向吸收超材料吸波体的仿真与实验验证[J]. 物理学报, 2013, 62(1): 169-174.

[3] Zhan S B, Liu T, Ni S C, et al. Structure design of absorber based on metamaterial[J]. Ordnance Material Science and Engineering, 2013, 36(1): 78-82. (in Chinese) 占生宝, 刘涛, 倪受春, 等. 一种基于超材料的吸波结构设计[J]. 兵器材料科学与工程, 2013, 36(1): 78-82.

[4] Cheng Y Z, Nie Y, Gong R Z, et al. Design of a thin wide-band absorber based on metamaterials and resistance frequency selective surface[J]. Acta Physica Sinica, 2012, 61(13): 136-141. (in Chinese) 程用志, 聂彦, 龚荣洲, 等. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计[J]. 物理学报, 2012, 61(13): 136-141.

[5] Shen X P, Cui T J, Ye J X. Dual band metamaterial absorber in microwave regime[J]. Acta Physica Sinica, 2012, 61(5): 474-477. (in Chinese) 沈晓鹏, 崔铁军, 叶建祥. 基于左手材料的微波双波段吸收器[J]. 物理学报, 2012, 61(5): 474-477.

[6] Cheng Y Z, Wang Y, Nie Y, et al. Design of a low-frequency broadband metamaterial absorber based on resistance frequency selective surface[J]. Acta Physica Sinica, 2012, 61 (13): 142-148. (in Chinese) 程用志, 王莹, 聂彦, 等. 基于电阻型频率选择表面的低频宽带左手材料吸波体的设计[J]. 物理学报, 2012, 61(13): 142-148.

[7] Bao S, Luo C R, Zhang Y P, et al. Broadband metamaterial absorber based on dendritic structure[J]. Acta Physica Sinica, 2010, 59(5): 282-286. (in Chinese) 保石, 罗春荣, 张燕萍, 等. 基于树枝结构单元的超材料宽带微波吸收器[J]. 物理学报, 2010, 59(5): 282-286.

[8] Xu W R, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber[J]. Applied Physics Letters, 2013, 103(3): 031902.

[9] Gu S, Barrett J P, Hand T H, et al. A broadband low-reflection metamaterial absorber[J]. Journal of Applied Physics, 2010, 108(6): 064913.

[10] Lee B, Wilbert D S, Baughman W, et al. Design, simulation, and characterization of THz metamaterial absorber[C]//Semiconductor Device Research Symposium (ISDRS), 2011 International, 2011: 1-2.

[11] Bollen P, Pardoen T, Bailly C, et al. Multifunctional metamaterial absorber based on honeycomb filled with epoxy-carbon nanotube nanocomposite and split ring resonator[C]//7th International Congress on International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials), 2013.

[12] Wang B N, Koschny T, Soukoulis C M. Wide-angle and polarization-independent chiral metamaterial absorber[J]. Physical Review: B, 2009, 80(3): 033108.

[13] Chong P H, Prakash P, Lin Y S, et al. Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics[J]. Applied Physics Letters, 2014, 104(16): 161104.

[14] Liu C Y. Some key techniques for stealth UAV[D]. Xi'an: Xidian University, 2012. (in Chinese) 刘春阳. 无人机隐身技术若干问题研究[D]. 西安: 西安电子科技大学, 2012.

[15] Wang H F. Research on stealth property of structural radar absorbing materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese) 王海风. 结构吸波材料的隐身性能研究[D]. 南京: 南京航空航天大学, 2008.

[16] Nie Y, Yu X Q. Optimization design for low detectable wing structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 465-468. (in Chinese) 聂毅, 余雄庆. 翼面隐身结构优化设计[J]. 南京航空航天大学学报, 2008, 40(4): 465-468.

[17] Nie Y, Yu X Q. Study on robust design optimization of electromagnetic scattering for stealthy wing structure[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(Sup.): 104-108. (in Chinese) 聂毅, 余雄庆. 翼面隐身结构电磁散射特性稳健优化设计研究[J]. 航空学报, 2007, 28(Sup.): 104-108.

[18] Li H X, Shen H J. The optimization design of the wing with low detectable structure[J]. Aircraft Design, 2010, 30(1): 5-8. (in Chinese) 李宏信, 沈海军. 隐身结构机翼RCS分析与优化设计[J]. 飞机设计, 2010, 30(1): 5-8.

[19] Motevasselian A, Jonsson B L G. A partially transparent Jaumann absober applied to an aircraft wing profile[C]//Antennas and Propagation Society International Symposium, 2010.

[20] Motevasselian A, Jonsson B L G. Radar cross section reduction of aircraft wing front end[C]//International Conference on Electromagnetic in Advanced Applications (ICEAA), 2009: 237-240.

[21] Shen H J, Li H X, Liu Y. RCS Analysis of aircraft wing with plasma stealth structure[J]. Aircraft Design, 2011, 31(1): 1-4. (in Chinese) 沈海军, 李宏信, 刘毅. 等离子体隐身结构机翼的RCS分析[J]. 飞机设计, 2011, 31(1): 1-4.

[22] Cheng D, Zheng H X. Research on electromagnetic scattering properties of plasma stealthy wing[J]. Journal of Tianjin University of Technology and Education, 2012, 22(4): 5-8. (in Chinese) 成丹, 郑宏兴. 等离子体隐身翼面的电磁散射特性研究[J]. 天津职业技术师范大学学报, 2012, 22(4): 5-8.

[23] Che Y X, Hou X Y. Modeling and analysis of a FSS radome appliable to RCS reduction of an aircraft wing front end[C]//National Conference on Microwave and Millimeter Wave. Shanghai: Microwave Society of Chinese Institute of Electronics, 2011: 1567-1570. (in Chinese) 车永星, 侯新宇. 应用于机翼前端RCS缩减的带阻型FSS天线罩建模与分析[C]//2011年全国微波毫米波会议论文集. 上海: 中国电子学会微波分会, 2011: 1567-1570.

[24] He G Y, Lu C C, Hong J C, et al. Calculation and measurement of electromagnetism scattering[M]. Beijing: Beihang University Press, 2006: 22. (in Chinese) 何国瑜, 卢才成, 洪家才, 等. 电磁散射的计算和测量[M]. 北京: 北京航空航天大学出版社, 2006: 22.

[25] Queipo N V, Haftka R T, Shy Y W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1): 1-28.

Outlines

/