Material Engineering and Mechanical Manufacturing

Variable tension dynamic control for filament winding of cylinder using neural network

  • KANG Chao ,
  • SHI Yaoyao ,
  • HE Xiaodong ,
  • ZHANG Jun ,
  • ZHANG Xiaoyang
Expand
  • The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-05-08

  Revised date: 2014-06-30

  Online published: 2014-07-26

Supported by

National Natural Science Foundation of China (51375394)

Abstract

As the key influencing factor in filament winding process, fluctuation of winding tension directly affects winding precision and productions' performance. In view of the dynamic change of winding tension and ensuring uniform circumferential residual stress of product, the method to dynamically control winding variable tension using a neural network is proposed. And considering the deformations of mandrel, the radial and circumferential stresses in winding layer under external pressure are obtained through analyzing the basis of anisotropic composite elastic theory and isotropic thick-walled cylinder elastic theory. Within the scope of the elastic limit, the analytic algorithm between residual tension distribution and winding tension is established based on the stress superposition principle. Based on the superposed characteristic of uniform circumferential residual stress, the variable tension during the winding process can be updated dynamically using a neural network with a given weight of output layer and error back propagation and amplification. Simulation and experimental results show that the proposed control method can dynamically optimize the variable tension of filament winding, and it can satisfy the desired requirements and is in line with the actual process of filament winding.

Cite this article

KANG Chao , SHI Yaoyao , HE Xiaodong , ZHANG Jun , ZHANG Xiaoyang . Variable tension dynamic control for filament winding of cylinder using neural network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1339 -1347 . DOI: 10.7527/S1000-6893.2014.0133

References

[1] Shi Y Y, Tang H, Yu Q. Key technology of the NC tape winding machine[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 233-239 (in Chinese). 史耀耀, 唐虹, 余强. 数控布带缠绕机关键技术[J]. 航空学报, 2008, 29(1): 233-239.
[2] Ren S, Lu H, Wang Y, et al. Development of PLC-based tension control system[J]. Chinese Journal of Aeronautics, 2007, 20(3): 266-271.
[3] Akkus N, Genc G, Girgin C. Control of the pretension in filament winding process[J]. Acta Mechanica et Automatica, 2008, 2(3): 5-10.
[4] Lee C W, Shin K H. A study on taper-tension control considering telescoping in the winding system[J]. IEEE Transactions on Industry Applications, 2010, 46(2): 687-693.
[5] Lee C W, Kang H, Shin K H. Advanced taper tension method for the performance improvement of a roll-to-roll printing production line with a winding process[J]. International Journal of Mechanical Sciences, 2012, 59(1): 61-72.
[6] Shi Y Y, Yan L, He X D. Variable tension control for discontinuous tape winding of composites based on constant extension ratio[J]. Chinese Journal of Mechanical Engineering, 2012, 25(5): 1022-1028.
[7] Shi Y Y, Yan L, He X D. Research on tension control technology for discontinous tape winding[J]. Acta Aer- onautica et Astronautica Sinica, 2010, 31(6): 1294-1298 (in Chinese). 史耀耀, 阎龙, 何晓东. 非连续带材缠绕张力控制技术研究[J]. 航空学报, 2010, 31(6): 1294-1298.
[8] Wang R C, Sun Y, Xu X Y. Research of cone tension control system in film winding based on fuzzy-neural network[J]. Control and Instruments in Chemical Industry, 2013, 40(3): 316-320 (in Chinese). 王瑞超, 孙宇, 胥小勇. 基于模糊神经网络的薄膜收卷锥度张力控制系统[J]. 化工自动化及仪表, 2013, 40(3): 316-320.
[9] Gassmann V, Knittel D. Tension observers in elastic web unwinder-winder systems[C]//2007 Internatioal Mechanical Engineering Congress and Exposition. New York: ASME, 2007: 313-321.
[10] Ponsart J C, Sauter D, Theilliol D. Control and fault diagnosis of a winding machine based on a ltv model[C]// Proceedings of 2005 IEEE Conference on Control Applications. New York: IEEE, 2005: 1642-1647.
[11] Ponsart J C, Theilliol D, Aubrun C. Virtual sensors design for active fault tolerant control system applied to a winding machine[J]. Control Engineering Practice, 2010, 18(9): 1037-1044.
[12] Cheng C J, Zhu Y Y. Mechanics of elasticity[M]. Shanghai: Shanghai University Press, 2005: 71-201 (in Chinese). 程昌钧, 朱媛媛. 弹性力学[M]. 上海: 上海大学出版社, 2005: 71-201.
[13] Liu C X,Xing J Z,Chen L, et al. Analysis of residual winding tension and design of winding tension for hoop winding on flexible cylinder[J]. Journal of Solid Rocket Technology, 2013, 36(2): 261-265 (in Chinese). 刘成旭, 邢静忠, 陈利, 等. 柔性厚壁筒环向缠绕张力分析与设计[J]. 固体火箭技术, 2013, 36(2): 261-265.
[14] Wu D H, Zhang Z Y. Approach to design tension of filament winding for thick composite pipes using a neural network[J].Acta Materiae Compositae Sinica, 2012, 29(8): 195-203 (in Chinese). 吴德会, 张忠远. 厚壁复合材料管纤维缠绕张力的神经网络设计方法[J]. 复合材料学报, 2012, 29(8): 195-203.
[15] Wang C X, Fu Y C, Yang R Q, et al. Tension analysis of winding process[J]. Acta Materiae Compositae Sinica,2002, 19(6): 120-123 (in Chinese). 王春香, 付云忠, 杨汝清, 等. 纤维缠绕过程中的张力分析[J]. 复合材料学报, 2002, 19(6): 120-123.
[16] Zhang Z Y, Deng G D, Shou B N, et al. Effect of winding tension on stress of hoop-wrapped composite cylinders[J]. Pressure Vessel Technology, 2011, 28(5):7-14 (in Chinese). 张宗毅, 邓贵德, 寿比南, 等. 缠绕张力对环缠绕复合材料气瓶应力的影响[J]. 压力容器, 2011, 28(5): 7-14.
[17] Liu J N. Study and realization of tension controller[D]. Harbin: Harbin Institute of Technology, 2008 (in Chinese). 刘静楠. 张力控制器的设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2008.

Outlines

/