ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of Gas Pressure on EDM Ablation of Titanium Alloy
Received date: 2014-02-21
Revised date: 2014-07-21
Online published: 2014-07-22
Supported by
National Natural Science Foundation of China (51175256, 51205197); Natural Science Foundation of Jiangsu Province (BK2011732)
In the electrical discharge machining (EDM) ablation process, the oxygen take an important role in the process of oxidation heat, metal corrosion and cooling. Investigation on the effect of gas pressure on improving the gas flow rate, decreasing the molecular mean free path of gas, improving the oxidation diffusion velocity, accelerating the energy dissipation is carried out. Breakdown voltage, the breakdown delay and working voltage under different gas pressure is tested, results show that breakdown voltage and breakdown delay characteristics is greatly influenced by gas pressure. Machining equivalent model of EDM ablation is established to prove that the change of working voltage is caused by the oxidation of the surface of electrode and workpiece. Influence of gas pressure on the material removal rate (MRR), relative electrode wear rate (REWR) and surface roughness in the EDM ablation is studied. The results show that with the increase of gas pressure, material removal rate increases firstly and then decreases, relative electrode wear decreases slowly and the surface roughness is significantly improved.
WANG Xiangzhi , LIU Zhidong , QIU Mingbo , TIAN Zongjun , HUANG Yinhui . Influence of Gas Pressure on EDM Ablation of Titanium Alloy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3480 -3488 . DOI: 10.7527/S1000-6893.2014.0165
[1] Strasky J, Janecek M, Harcuba P, et al. The effect of microstructure on fatigue performance of Ti-6Al-4V alloy after EDM surface treatment for application in orthopaedics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(8): 1955-1962.
[2] Zhang Y P, Sun G B, Zhang A Z. Effect of abrasive particle ultrasonic vibration on surface quality of titanium alloy TC4 in EDM[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 204-209. (in Chinese) 张云鹏, 孙广标, 张安洲. 超声磨料对TC4钛合金电火花加工表面质量的影响[J]. 航空学报, 2010, 31(1): 204-209.
[3] Zheng M L, Fan Y H. An overview of tool friction and wear behavior in high-speed machining-typical difficult-to-cut material[J]. Journal of Harbin University of Science and Technology, 2011, 16(6): 22-30. (in Chinese) 郑敏利, 范依航. 高速切削典型难加工材料刀具摩擦与磨损机理研究现状[J]. 哈尔滨理工大学学报, 2011, 16(6): 22-30.
[4] Kao J Y, Tsao C C, Wang S S, et al. Optimization of the EDM parameters on machining Ti-6Al-4V with multiple quality characteristics[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(1-4): 395-402.
[5] Mohammed B N, Khan A A, Mohammad Y A. Surface modification of titanium alloy through electrical discharge machining (EDM)[J]. International Journal of Mechanical and Materials Engineering (IJMME), 2011, 6(3): 380-384.
[6] Chen L H, Liu Z D, Qiu M B, et al. Technical research of combined machining of TC4 titanium alloy by EDM induced controllable combustion and turning dressing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2626-2634. (in Chinese) 陈龙海, 刘志东, 邱明波, 等. TC4钛合金电火花诱导可控烧蚀复合车削技术研究[J]. 航空学报, 2013, 34(11): 2626-2634.
[7] Hascalik A, Caydas U. Electrical discharge machining of titanium alloy (Ti-6Al-4V)[J]. Applied Surface Science, 2007, 253(22): 9007-9016.
[8] Norliana M A, Solomon D G, Bahari M F. A review on current research trends in electrical discharge machining (EDM)[J]. International Journal of Machine Tools and Manufacture, 2007, 47(7-8): 1214-1228.
[9] Chow H, Yan B, Huang F, et al. Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining[J]. Journal of Materials Processing Technology, 2000, 101(1-3): 95-103.
[10] Kunieda M, Furuoya S, Taniguchi N. Improvement of EDM efficiency by supplying oxygen gas into gap[J]. CIRP Annals-Manufacturing Technology, 1991, 40(1): 215-218.
[11] Yang K. Study of electrical discharge milling in jetted mist[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese) 杨凯. 喷雾电火花铣削加工技术研究[D]. 上海: 上海交通大学, 2012.
[12] Wang X Z, Liu Z D, Xue R Y, et al. Research on self-mixed oxygen in discharge gap to improve the processing characteristics of titanium alloy electrical discharge machining[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2419-2426. (in Chinese) 王祥志, 刘志东, 薛荣媛, 等. 极间自混氧改善钛合金电火花加工特性研究[J]. 航空学报, 2013, 34(10): 2419-2426.
[13] Liu Z D, Tian Z J, Wang X Z, et al. Electrical discharge machining ablation method for titanium or titanium alloy processing: China, ZL201010544351.0[P]. 2011-02-18. (in Chinese) 刘志东, 田宗军, 王祥志, 等. 钛或钛合金电火花诱导可控燃爆蚀除加工方法: 中国, ZL201010544351.0[P]. 2011-02-18.
[14] Frank-Kamenetskii D A. Diffusion and heat transfer in chemical kinetics[M]. Moscow: Nauka, 1983: 10-12. (in Russian)
[15] Liang G F. High-speed oxygen cutting method[M]. Beijing: China Machine Press, 1975: 15-16. (in Chinese) 梁桂芳. 高速氧气切割法[M]. 北京: 机械工业出版社, 1975: 15-16.
[16] Davies H J. Modern fluid dynamics: compressible flow[M]. New York: Van Nostrand Reinhold, 1971: 243-256.
[17] Qiu M B, Liu Z D, Tian Z J, et al. Study of unidirectional conductivity on the electrical discharge machining of semiconductor crystals[J]. Precision Engineering, 2013, 37(4): 902-907.
/
〈 | 〉 |