XIE Jinpeng
,
LUO Hongyun
,
LYU Jinlong
,
YE Kanglin
. Effect of Dislocation on the Electrochemical Property of Austenite in Deformed 304 Stainless Steels[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014
, 35(10)
: 2857
-2864
.
DOI: 10.7527/S1000-6893.2014.0156
[1] Wachter O, Brummer G. Experiences with austenitic steels in boiling water reactors[J]. Nuclear Engineering and Design, 1997, 168(1-3): 35-52.
[2] Peguet L, Malki B, Baroux B. Influence of cold working on the pitting corrosion resistance of stainless steels[J]. Corrosion Science, 2007, 49(4): 1933-1948.
[3] Estrin Y, TóthL S, Molinari A, et al. A dislocation-based model for all hardening stages in large strain deformation[J]. Acta Materialia, 1998, 46(15): 5509-5522.
[4] Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction[J]. Acta Materialia, 2011, 59(11): 4314-4322.
[5] Sahal M, Creus J, Sabot R, et al. The effects of dislocation patterns on the dissolution process of polycrystalline nickel[J]. Acta Materialia, 2006, 54(8): 2157-2167.
[6] Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel[J]. Corrosion Science, 1996, 38(7): 1141-1145.
[7] Mughrabi H, Ungar T. Dislocations in solids[M]. Amsterdam: Elsevier, 2002: 343.
[8] Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations[J]. Journal of Less-Common Metals, 1972, 28(1): 107-118.
[9] Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel[J]. Materials Science and Engineering: A, 2008, 486(1-2): 283-286.
[10] Das A, Tarafder S. Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel[J]. International Journal of Plasticity, 2009, 25(11): 2222-2247.
[11] Huanga Y H, Xuana F Z, Tua S T, et al. Texture and grain growth characteristics in a boron added interstitial free steel after severe cold rolling and annealing[J]. Materials Science and Engineering: A, 2011, 528(3): 1882-1888.
[12] Garcia C, Martin F, Tiedra P D, et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels[J]. Corrosion Science, 2001, 43(8): 1519-1539.
[13] Nazari A, Mohandesi J A, Tavareh S. Microhardness profile prediction of a graded steel by strain gradient plasticity theory[J]. Computational Materials Science, 2011, 50(5): 1781-1784.
[14] Gutman E M. Mechanochemistry of materials[M]. London: Cambridge International Science Publishing, 1998: 205.
[15] Grubac Z, Metikos-Hukovic M. EIS study of solid-state transformations in the passivation process of bismuth in sulfide solution[J]. Journal of Electroanalytical Chemistry, 2004, 565(1): 85-94.
[16] Qiao Y X, Zheng Y G. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions[J]. Corrosion Science, 2009, 51(5): 979-986
[17] Rangel C M, Silva T M, Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels[J]. Electrochim Acta, 2005, 50(25-26): 5076-5082.
[18] Lv J L, Luo H Y. Electrochemical investigation of passive film in pre-deformation AISI 304 stainless steels[J]. Applied Surface Science, 2012, 263: 29-37.
[19] Lee J B, Yoon S I. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels[J]. Materials Chemistry and Physics, 2010, 122(1):194-199.
[20] Sato N. Electrochemistry at metal and semiconductor electrodes[M]. Amsterdam: Elsevier, 1998: 79-81.