Review

Research Progress on the Flexible Thin-film Thermoelectric Devices

  • DENG Yuan ,
  • ZHANG Yizheng ,
  • WANG Yao ,
  • GAO Hongli
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-16

  Revised date: 2014-07-08

  Online published: 2014-07-12

Supported by

National Natural Science Foundation of China (51172008)

Abstract

The recent research progress of flexible thin-film thermoelectric devices is presented from the following aspects: the choice of the flexible substrates, the types of thermoelectric materials, the deposition process of thermoelectric thin films, the introduction of buffer layer, and the design of devices. At the same time, the major aspects in selection of thermoelectric materials and deposition process of thin films have been summarized. By comparison among the performances of reported thermoelectric devices, the flexible thin-film thermoelectric devices with alloy of (Bi,Sb)2Te3 show the best performance and the output voltage of single thermocouple can reach 0.1-0.3 mV with the temperature difference of 1 K, which nearly equals to the Seebeck coefficient of thermoelectric materials on the condition of sufficiently low internal resistance. Increasing the thickness of thermoelectric thin film can reduce the internal resistance of thermocouple effectively, and therefore improve the output voltage of flexible thin-film thermoelectric devices.

Cite this article

DENG Yuan , ZHANG Yizheng , WANG Yao , GAO Hongli . Research Progress on the Flexible Thin-film Thermoelectric Devices[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(10) : 2733 -2746 . DOI: 10.7527/S1000-6893.2014.0152

References

[1] Baba S, Sato H, Huang L, et al. Formation and characterization of polyethylene terephthalate-based (Bi0.15Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition[J]. Journal of Alloys and Compounds, 2014, 589: 56-60.

[2] Itoigawa K, Ueno H, Shiozaki M, et al. Fabrication of flexible thermopile generator[J]. Journal of Micromechanics and Microengineering, 2005, 15(9): S233-S238.

[3] Gao M, Zhang J S. Thermoelectric conversion and its application[M]. Beijing: Weapons Industry Press, 1996: 292-293. (in Chinese) 高敏, 张景韶. 温差电转换及其应用[M]. 北京: 兵器工业出版社, 1996: 292-293.

[4] Francioso L, De Pascali C, Siciliano P, et al. Thin film technology flexible thermoelectric generator and dedicated ASIC for energy harvesting applications[C]//2013 5th IEEE International Workshop on Advance in Sensors and Interfaces, 2013: 104-107.

[5] He Y J, Chen H, Chen M X. Thermoelectric electricity generation——a new green energy technology[J]. Engineering Physics, 2000, 10(2): 36-41. (in Chinese) 何元金, 陈宏, 陈默轩. 温差发电——一种新型绿色的能源技术[J]. 工科物理, 2000, 10(2): 36-41.

[6] Fan P, Zheng Z H, Zhang D P, et al. Latest progress of thermoelectric thin films and thin film thermoelectric generators[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(8): 700-704. (in Chinese) 范平, 郑壮豪, 张东平, 等. 热电薄膜与薄膜温差电池研究进展[J]. 真空科学与技术学报, 2012, 32(8): 700-704.

[7] Shi W, Zhong W, Yu D B. Research progress of micro thermoelectric devices[J]. Material Review, 2010, 24(4): 44-46. (in Chinese) 施文, 钟武, 余大斌. 微型热电器件的研究进展[J]. 材料导报, 2010, 24(4): 44-46.

[8] Zhao W Y, Fan S F, Xiao N, et al. Flexible carbon nanotube papers with improved thermoelectric properties[J]. Energy & Environmental Science, 2012, 5(1): 5364-5369.

[9] Zhang G Q, Yu Q X, Wang W, et al. Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies[J]. Advanced Materials, 2010, 22(17): 1959-1962.

[10] Hsiao C C, Wu Y S. Fabrication of flexible thin-film thermoelectric generators[J]. Journal of the Chinese Institute of Engineers, 2011, 34(6): 809-816.

[11] Chen M, Liao B, Kong D W. The latest development of thermoelectric microdevices based on MEMS technology[J]. Microelectronics, 2004, 34(1): 7-12. (in Chinese) 陈民, 廖波, 孔德文. 基于MEMS技术的微热电器件的研究进展[J]. 微电子学, 2004, 34(1): 7-12.

[12] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.

[13] Liu X Y, Ren S, Wen L S. Progress in application and fabrication of micro thermoelectric device[J]. Material Review, 2007, 21(3): 5-9. (in Chinese) 刘向阳, 任山, 闻立时. 微型热电器件研究进展[J]. 材料导报, 2007, 21(3): 5-9.

[14] Vining C B. An inconvenient truth about thermo--electric[J]. Nature Materials, 2009, 8(2): 83-85.

[15] Liu D W, Li L L, Li J F. The latest research progress in the applications of thermoelectric microdevices[J]. Sciencepaper Online, 2011, 6(8): 574-578. (in Chinese) 刘大为, 李亮亮, 李敬锋. 微型热电器件应用的最新研究进展[J]. 中国科技论文在线, 2011, 6(8): 574-578.

[16] Yu C, Choi K, Yin L, et al. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors[J]. ACS Nano, 2011, 5(10): 7885-7892.

[17] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.

[18] Liang D X, Yang H R, Finefrock S W, et al. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting[J]. Nano Letters, 2012, 12(4): 2140-2145.

[19] Mu W D. Fabrication of Bi2Te3-based thermoelectric thin films and study on the performances[D]. Changsha: National University of Defense Technology, 2009. (in Chinese) 穆武第.碲化铋基热电薄膜制备及其热电性能研究[D]. 长沙: 国防科学技术大学, 2009.

[20] Delaizir G, Monnier J, Soulier M, et al. A new generation of high performance large-scale and flexible thermogenerators based on (Bi,Sb)2(Te,Se)3 nano-powders using the spark plasma sintering technique[J]. Sensors and Actuators A: Physical, 2012, 174: 115-122.

[21] Rushing L, Shakouri A, Abraham P, et al. Micro thermoelectric coolers for integrated applications [C]//Proceedings of 16th International Conference on Thermoelectrics (ICT'97), 1997: 646-649.

[22] Li H Y, Zhou Y, Liu J. Liquid metal based printable thermoelectronic generator and its performance evaluation[J]. Scientia Sinica Technologica, 2014, 44(4): 407-416. (in Chinese) 李海燕, 周远, 刘静. 基于液态金属的可印刷式热电发生器及其性能评估[J]. 中国科学:技术科学, 2014, 44(4): 407-416.

[23] Jin R G, Hua Y Q. Polymer physics[M]. Beijing: Chemical Industry Press, 2006: 132-143. (in Chinese) 金日光, 华幼卿. 高分子物理[M]. 北京: 化学工业出版社, 2006: 132-143.

[24] Gao J G, Li Y X. Polymer materials[M]. Beijing: Chemical Industry Press, 2002: 143-145. (in Chinese) 高俊刚, 李源勋. 高分子材料[M]. 北京: 化学工业出版社, 2002: 143-145.

[25] Ren D H, Lu K, Dai Z Y, et al. Latest development of micro thermoelectric cooler based on MEMS[J]. Journal of Mechanical Engineering, 2010, 46(8): 114-120. (in Chinese) 任大海, 卢 凯, 戴震宇, 等. 基于微机电系统技术的微型热电致冷器研究进展[J]. 机械工程学报, 2010, 46(8): 114-120.

[26] Yang M B, Tang Z Y. Handbook of polymer materials[M]. Beijing: Chemical Industry Press, 2009: 253-331. (in Chinese) 杨鸣波, 唐志玉. 高分子材料手册[M]. 北京: 化学工业出版社, 2009: 253-331.

[27] Hu Z B. Insulation materials technology[M]. Beijing: Chemical Industry Press, 2005: 11-13. (in Chinese) 胡兆斌. 绝缘材料工艺学[M]. 北京: 化学工业出版社, 2005: 11-13.

[28] Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators[J]. Energy & Environmental Science, 2012, 5(11): 9345-9362.

[29] Madan D, Wang Z, Chen A, et al. High-performance dispenser printed MA p-Type Bi0.5Sb1.5Te3 flexible thermoelectric generators for powering wireless sensor networks[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 11872-11876.

[30] Cheng L, Liu H J, Tan X J, et al. Thermoelectric properties of a monolayer bismuth[J]. The Journal of Physical Chemistry C, 2014, 118(2): 904-910.

[31] Qu W, Ploetner M, Fischer W J. Microfabrication of thermoelectric generators on flexible foil substrates as apower source for autonomous microsystems[J]. Journal of Micromechanics and Microengineering, 2001, 11(2): 146-152.

[32] Naoki T, Nattha J, Hiromasa M. Organic thermoelectric materials composed of conducting polymers and metal nanoparticles[J]. Journal of Electronic Matrials, 2012, 41(6): 1735-1742.

[33] Zhang Q L. Preparation and thermoelectrical performance of polyaniline nanocomposities[D]. Shanghai: Donghua University, 2012. (in Chinese) 张庆丽. 聚苯胺纳米复合材料的制备及热电性能研究[D]. 上海: 东华大学, 2012.

[34] Yue R, Xu J. Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review[J]. Synthetic Metals, 2012, 162(11-12): 912-917.

[35] Shi H, Liu C C, Xu J K, et al. Facile fabrication of PEDOT: PSS/Polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 12811-12819.

[36] Scholdt M, Do H, Lang J, et al. Organic semiconductors for thermoelectric applications[J]. Journal of Electronic Materials, 2010, 39(9): 1589-1592.

[37] He M, Qiu F, Lin Z Q. Towards high-performance polymer-based thermoelectric materials[J]. Energy and Environmental Science, 2013, 6(5): 1352-1361.

[38] Piao M, Na J, Choi J, et al. Increasing the thermoelectric power generated by composite films using chemically functionalized single-walled carbon nanotubes[J]. Carbon, 2013, 62: 430-437.

[39] Suemori K, Hoshino S, Kamata T. Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate[J]. Applied Physics Letters, 2013, 103(15): 1-4.

[40] Moriarty G P, De S, King P J, et al. Thermoelectric behavior of organic thin film nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(2): 119-123.

[41] Ho M C, Chao C H, Lo A Y, et al. Significant improvement in the thermoelectric properties of zwitterionic polysquaraine composite films[J]. Materials Chemistry and Physics, 2013, 141(2): 920-928.

[42] He M, Ge J, Lin Z Q, et al. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface[J]. Energy & Environmental Science, 2012, 5(8): 8351-8358.

[43] Shi C X, Li H D, Zhou L. Materials science and engi-neering handbook[M]. Beijing: Chemical Industry Press, 2004: 10-95. (in Chinese) 师昌绪, 李恒德, 周廉. 材料科学与工程手册[M].北京: 化学工业出版社, 2004: 10-95.

[44] Zheng W T. Thin-film materials and technology[M]. Beijing: Chemical Industry Press, 2007: 11-47. (in Chinese) 郑伟涛. 薄膜材料与薄膜技术[M]. 北京: 化学工业出版社, 2007: 11-47.

[45] Milton O. Materials science of thin films[M]. New York:Academic Press, 2013: 49-51.

[46] Zou H L, Rowe D M, Min G. Growth of p-and n-type bismuth telluride thin films by co-evaporation[J]. Journal of Crystal Growth, 2001, 222(1-2): 82-87.

[47] Mizoshiri M, Mikami M, Ozaki K. p-Type Sb2Te3 and n-Type Bi2Te3 films for thermoelectric modules deposited by thermally assisted sputtering method[J]. Japanese Journal of Applied Physics, 2013, 52(6S): 1-5.

[48] Francioso L, De Pascali C, Farella I, et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors[J]. Journal of Power Sources, 2011, 196(6): 3239-3243.

[49] Yang Y, Lin Z H, Hou T, et al. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors[J]. Nano Research, 2012, 5(12): 888-895.

[50] Kwon S D, Ju B, Yoon S J, et al. Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition[J]. Journal of Electronic Materials, 2009, 38(7): 920-924.

[51] Glatz W, Muntwyler S, Hierold C. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator[J]. Sensors and Actuators A, 2006, 132(1): 337-345.

[52] Shi M, Wu G J. Semiconductor device physics[M]. Xi'an: Xi’an Jiaotong University Press, 2008: 22-31. (in Chinese) 施敏, 伍国珏. 半导体器件物理[M]. 西安: 西安交通大学出版社, 2008: 22-31.

[53] Zhou Z, Wang Y Y, Sharp J, et al. Optimal thermo-electric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites[J]. APS Physics, 2012, 3: 1-39.

[54] Weber J, Potje-Kamloth K, Haase F, et al. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics[J]. Sensors and Actuators A: Physical, 2006, 132(1): 325-330.

[55] Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator[J]. Journal of Power Sources, 2008, 175(2): 909-913.

Outlines

/