Electronics and Control

A Software Safety Assessment Method Based on Semi-physical Simulation Test

  • ZHU Hequan ,
  • XU Haojun ,
  • XUE Yuan ,
  • YANG Xue ,
  • SU Chen
Expand
  • 1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
    2. Air Force Military Representative Office in Beijing Region, Beijing 100009, China

Received date: 2013-09-09

  Revised date: 2013-11-26

  Online published: 2014-06-20

Supported by

National Natural Science Foundation of China (61374145); Aeronautical Science Foundation of China (U1333131)

Abstract

A safety assessment method based on semi-physical simulation is proposed to assess airborne software safety and develop safety control techniques in complex multi-factor coupled flight situations. A notion is introduced of using flight simulator tests to assess software safety. The operation procedure of the safety assessment method is designed. The simulator's main mathematic model is established. By drawing on biological theory, the mechanism of software fault induced aircraft accident is analyzed. Finally, the safety of an embedded software of stability augmentation system is assessed. The result demonstrates the proposed method is feasible in engineering practice. It can be used to reduce aircraft risk induced by airborne software fault in complex multi-factor coupled flight situations, and improve the safety of airborne software.

Cite this article

ZHU Hequan , XU Haojun , XUE Yuan , YANG Xue , SU Chen . A Software Safety Assessment Method Based on Semi-physical Simulation Test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(6) : 1703 -1713 . DOI: 10.7527/S1000-6893.2013.0479

References

[1] Shen Y L, Cui X N, Ma J F, et al. Trust software technology in integrated avionics systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 938-945. (in Chinese) 沈玉龙, 崔西宁, 马建峰, 等. 综合化航空电子系统可信软件技术[J]. 航空学报, 2009, 30(5): 938-945.

[2] Fan X G, Chu W K, Zhang F M. Surveys of software safety[J]. Computer Science, 2011, 38(5): 8-27. (in Chinese) 樊晓光, 禇文奎, 张凤鸣. 软件安全性研究综述[J]. 计算机科学, 2011, 38(5): 8-27.

[3] Leveson N G. Software safety: why, what, and how[J]. ACM Computing Surveys, 1986,18(2): 125-163.

[4] Ericson C A II. Hazard analysis techniques for system safety[M]. Hoboken: John Wiley & Sons, Inc., 2005: 151-277.

[5] Huang H W, Shih C, Yih S, et al. Model extension and improvement for simulator-based software safety analysis[J]. Nuclear Engineering and Design, 2007, 237(9): 955-971.

[6] Wan Y C, Zhou X S, Dong Y W. Software safety analysis based on component-level failure modeling[J]. Computer Engineering, 2010, 36(14): 59-61. (in Chinese) 万永超, 周兴社, 董云卫. 基于构件失效建模的软件安全性分析[J]. 计算机工程, 2010, 36(14): 59-61.

[7] Qin Z D, Liu X Q, Wang H Y, et al. Software safety growth testing method based on correlative risk profile[J]. Systems Engineering and Electronics, 2009, 31(3): 686-690. (in Chinese) 覃志东, 刘晓强, 王洪亚, 等. 基于关联风险剖面的软件防危性增长测试[J]. 系统工程与电子技术, 2009, 31(3): 686-690.

[8] He G W. Software reliability[M]. Beijing: National Defense Industry Press, 1998: 5-30. (in Chinese) 何国伟. 软件可靠性[M]. 北京: 国防工业出版社, 1998: 5-30.

[9] Li L B, Han X S. Multi-level fuzzy integrated evaluation of software quality[J]. Journal of Harbin Institute of Technology, 2003, 35(7): 812-819. (in Chinese) 李良宝, 韩喜双. 软件质量的多级模糊综合评价[J]. 哈尔滨工业大学学报, 2003, 35(7): 812-819.

[10] Zeng F P. A method of fault injection software testing based on EAI model[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2005, 33(Sup.): 304-316. (in Chinese) 曾凡平. 一种基于EAI模型的软件安全性测试方法[J]. 华中科技大学学报: 自然科学版, 2005, 33(增刊): 304-316.

[11] Xu H J, Liu D L, Xue Y, et al. Airworthiness compliance verification method based on simulation of complex system[J]. Chinese Journal of Aeronautics, 2012, 25(5): 681-690.

[12] Center of Demonstration and Research of Arms Equipment. GJB/Z 157—2011: Guide for military software security assurance[S]. 2011. (in Chinese) 总装备部武器装备论证研究中心. GJB/Z 157—2011:军用软件安全保证指南[S]. 2011.

[13] Stevens B L, Lewis F L. Aircraft control and simulation[M]. Hoboken: John Wiley & Sons, Inc., 1992: 97-101.

[14] Zhou L, Xu H J, Su C, et al. Quantitative assessment of flight safety under atmospheric icing conditions[J]. High Technology Letters, 2012, 18(1): 90-95.

[15] Kim H S, Bragg M B. Effects of leading-edge ice accretion geometry on airfoil performance, AIAA-1999-3150. Reston: AIAA, 1999.

[16] Merret J M, Hossain K N, Bragg M B. Envelope protection and atmospheric disturbances in icing encounters, AIAA-2002-0814. Reston: AIAA, 2002.

[17] Liu D L. Research on modeling & simulation and risk evaluation methods of multi-factor coupling complex flight situations. Xi'an: Aeronautics and Astronautics Engineering College, Air Force Engineering University, 2013. (in Chinese) 刘东亮. 多因素耦合复杂飞行情形建模仿真与风险评估方法研究. 西安: 空军工程大学航空航天工程学院, 2013.

[18] Hu M Q, Zhang D C, Dong Y F. High atmospheric flight mechanics[M]. Beijing: Aviation Industry Press, 2007: 7-11. (in Chinese) 胡孟权, 张登成, 董彦非. 高等大气飞行力学[M]. 北京: 航空工业出版社, 2007: 7-11.

[19] Johnson L A. DO-178B Software considerations in airborne systems and equipment certification[S]. Washington, D. C.: Radio Technical Commission for Aeronautics (RTCA), 1992.

[20] SAE. SAE ARP4761 Aerospace recommended practice, guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment[S]. Warrendale: SAE International, 1996.

[21] Chu W K. Research on IMA software safety development and certification method. Xi'an: College of Engineering, Air Force Engineering University, 2009. (in Chinese) 褚文奎. 综合航电系统软件安全性开发与认证方法研究. 西安: 空军工程大学工程学院, 2009.

[22] Lloyd E, Tye W. Systematic safety: safety assessment of aircraft systems[M]. London: Civil Aviation Authority, 1995: 83-84.

Outlines

/