ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Fast recognition of cooperative target used for position and orientation measurement of space station's robot arm
Received date: 2014-05-06
Revised date: 2014-06-10
Online published: 2014-06-18
Supported by
National Basic Research Program of China(2013CB733103)
When space station's robot arm performs auxiliary docking or target arresting, position and orientation between the visual sensor fixed on robot arm and the cooperative target on object must be measured in real-time, and its prerequisite is fast recognition of cooperative target. A fast recognition algorithm of cooperative target is proposed. The algorithm consists of three steps. To begin with, Sobel operator and the improved non-maximum suppression algorithm are hired to extract single pixel edges in the picture of cooperative target. Moreover, every edge is split into two sections, and each section is fitted into a circle using least square circle fitting method. If two halves have similar fitting results, the edge belongs to a circle. Finally, we draw two square windows around each circle according to the circle's radius, one big and one small. The number of straight lines that are in the complement area of the two windows and are close to the circle center is counted, and the cooperative target is identified if the number of straight lines suites the predetermined condition. Experiments using hand-eye camera, six-DOF turntable and the cooperative target are executed to test our algorithm. Results demonstrate that the proposed algorithm can accurately identify the cooperative target within a distance of 1.5 m regardless of lighting condition. In conclusion, the cooperative target recognition method is fast and stable and has strong anti-interference capability.
WEN Zhuoman , WANG Yanjie , CHU Guangli , JIN Minghe . Fast recognition of cooperative target used for position and orientation measurement of space station's robot arm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1330 -1338 . DOI: 10.7527/S1000-6893.2014.0118
[1] Wei C, Zhao Y, Tian H. Grasping control of space robot for capturing floating target [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 633-637 (in Chinese). 魏承, 赵阳, 田浩. 空间机器人捕获漂浮目标的抓取控制[J]. 航空学报, 2010, 31(3): 633-637.
[2] Cong P C, Sun Z W. Research of impact issues during dual-arm space manipulator capturing object[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(4): 235-241 (in Chinese). 丛佩超, 孙兆伟. 双臂式空间机械臂捕捉目标的碰撞问题研究[J]. 四川大学学报: 工程科学版, 2010, 42(4): 235-241.
[3] Zhang F H, Fu Y L, Wang S G. Adaptive control of free-floating space robot with inertia parameter uncertainties [J]. Acta Aeronautica et Astronautica Sinica, 2012, 32(12): 2347-2354 (in Chinese). 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 32(12): 2347-2354.
[4] Liang J, Chen L. Improved nonlinear feedback control for free-floating space-based robot with time-delay based on predictive and approximation of Taylor series[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 163-169 (in Chinese). 梁捷, 陈力. 具有时延的漂浮基空间机器人基于泰勒级数预测、逼近的改进非线性反馈控制[J]. 航空学报, 2012, 33(1): 163-169.
[5] Li J, Yuan F, Hu Y H. Attitude measurement of space objects based on multi-linear CCD and multi-point cooperation target[J]. Optics and Precision Engineering, 2013, 21(6): 1635-1641 (in Chinese). 李晶, 袁峰, 胡英辉. 基于多点合作目标的多线阵CCD空间物体姿态测量[J]. 光学精密工程, 2013, 21(6): 1635-1641.
[6] Wei X Q, Huang J M, Chen F, et al. Research on super close distance independent image navigation of cooperative target[J]. Manned Spaceflight, 2012, 18(2): 28-39 (in Chinese). 魏祥泉, 黄建明, 陈凤, 等. 合作目标超近距离自主影像导航技术研究[J]. 载人航天, 2012, 18(2): 28-39.
[7] Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 243-256 (in Chinese). 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 243-256.
[8] Wen Z M, Wang Y J, Di N, et al. On-orbit hand-eye calibration using cooperative target[J]. Chinese Journal of Scientific Instrument, 2014, 35(5): 1005-1012 (in Chinese). 温卓漫, 王延杰, 邸男, 等. 基于合作靶标的在轨手眼标定[J]. 仪器仪表学报, 2014, 35(5): 1005-1012.
[9] Zhou F, Yang C, Wang C G, et al. Circle detection and its number identification in complex condition based on random Hough transform[J]. Chinese Journal of Scientific Instrument, 2013, 34(3): 623-627 (in Chinese). 周封, 杨超, 王晨光, 等. 基于随机Hough变换的复杂条件下圆检测与数目辨识 [J]. 仪器仪表学报, 2013, 34(3): 623-627.
[10] Duan L M, Wang W, Zhang X. Circle detection through improved Hough transform[J]. Computer Integrated Manufacturing Systems, 2013, 19(9): 2148-2152 (in Chinese). 段黎明, 汪威, 张霞. 改进的Hough变换实现圆检测[J]. 计算机集成制造系统, 2013, 19(9): 2148-2152.
[11] Liu Y J, Lai R F, Rong W B, et al. A fast center detecting method based on improved randomized Hough trans-form[J]. Nanotechnology and Precision Engineering, 2011, 9(4): 298-304 (in Chinese). 刘延杰, 赖日飞, 荣伟彬, 等. 基于改进随机Hough 变换的快速中心检测方法[J]. 纳米技术与精密工程, 2011, 9(4): 298-304.
[12] Wu J P, Li J X, Xiao C S, et al. Real-time robust algorithm for circle object detection [C]//The 9th International Conference for Young Computer Scientists, 2008: 1722-1727.
[13] Pratt W K. Digital image processing[M]. Deng L H, Zhang Y H, translated. Beijing: China Machine Press, 2005: 330-331 (in Chinese). Pratt W K. 数字图像处理[M]. 邓鲁华, 张延恒, 译. 北京: 机械工业出版社, 2005: 330-331.
[14] Wang J, Wang H L, Xiang M S, et al. Sub-pixel accuracy central location of circle target based on non-maximum suppression[J]. Chinese Journal of Scientific Instrument, 2012, 33(7): 1460-1468 (in Chinese). 王静, 王海亮, 向茂生, 等. 基于非极大值抑制的圆目标亚像素中心定位 [J]. 仪器仪表学报, 2012, 33(7): 1460-1468.
[15] He F Y, Tian Z, Liu X Z, et al. A fast edge tracking algorithm for image segmentation using a simple Markov random field model[C]//International Conference on Computer Science and Electronics Engineering, 2012: 633-636.
[16] Tri C P, Yong S I, Ja C K, et al. An enhanced edge tracking method using a low resolution tactile sensor[J]. International Journal of Control, Automation, and Systems, 2010, 8(2):462-467.
/
〈 |
|
〉 |