ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Opportunities and Challenges of Aircraft Structural Health Monitoring
Received date: 2013-12-15
Revised date: 2014-04-29
Online published: 2014-06-06
Supported by
Ministry Level Project
Aircraft structural health monitoring (SHM) technology has experienced rapid development since its concept emerged. However, it faces the bottleneck in the applications for the aviation engineering now. The purpose of this paper is trying to explain the crux of the problem and provide a clear way for the next development. From the viewpoint of the evolution of aircraft structural integrity program and of the change of aircraft structure design philosophy, the necessity of aircraft structural health monitoring technology is analyzed. Aircraft structure design requirements and safety control system are discussed. The evidence strongly proves that the structural health monitoring technology, with great potential for improving the safety and reliability of aircraft structural level, reducing maintenance costs for future aircraft structures, will bring a revolutionary impact on aircraft structures design. The strategy of aircraft structural health monitoring is also analyzed. The latest progress and the development direction in the research of aircraft structural health monitoring are introduced.
SUN Xiasheng , XIAO Yingchun . Opportunities and Challenges of Aircraft Structural Health Monitoring[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3199 -3212 . DOI: 10.7527/S1000-6893.2014.0082
[1] Yuan S F. Structure health monitoring and damage control[M]. Beijing: National Defense Industry Press, 2007: 1-23. (in Chinese) 袁慎芳. 结构健康监控[M]. 北京: 国防工业出版社, 2007: 1-23.
[2] Boller C. Next generation structural health monitoring and its integration into aircraft design[J]. International Journal of Systems Science, 2000, 31(11): 1333-1349.
[3] Du S Y, Zhang B M. Status and developments of intelligentized aircraft structures[J]. Journal of Astronautics, 2007, 28(4): 773-778. (in Chinese) 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报, 2007, 28(4): 773-778.
[4] Feng Z X, Miao C Q, Zhong J C. Safety monitoring and assessment of long span bridges[M]. Beijing: China Communications Press, 2010: 1-20. (in Chinese) 冯兆祥, 缪长青, 钟建驰. 大跨桥梁安全监测与评估[M]. 北京: 人民交通出版社, 2010: 1-20.
[5] Lin J F, Cheng Y, Huang J L, et al. Massive data processing in large-scale structural health monitoring and the corresponding database development[J]. Journal of Vibration and Shock, 2010, 29(12): 55-59. (in Chinese) 林健富, 程瀛, 黄建亮, 等. 大型建筑结构健康监测的海量数据处理与数据库开发研究[J]. 振动与冲击, 2010, 29(12): 55-59.
[6] Qi Y B, He J F, Liang L. Fiber brag grating real-time monitoring system of boom truss structure of large-scale offshore floating crane[J]. Journal of Central South University: Science and Technology, 2012, 43(9): 3455-3463. (in Chinese) 祁耀斌, 何进飞, 梁磊. 大型海上浮吊吊臂桁架结构光纤光栅实时监测系统研究[J]. 中南大学学报: 自然科学版, 2012, 43(9): 3455-3463.
[7] Yuan S F, Liang D, Gao N, et al. The bridge data diagnosis research based on structural health monitoring system[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(1): 69-74. (in Chinese) 袁慎芳, 梁栋, 高宁, 等. 基于结构健康监测系统的桥梁数据异常诊断研究[J]. 电子科技大学学报, 2013, 42(1): 69-74.
[8] Chen X H, Omenzetter P. A framework for reliability assessment of an in-service bridge using structural health monitoring data[J]. Key Engineering Materials, 2013, 558: 39-51.
[9] Qing X L, Wang Y S, Zhao L. Structural health monitoring technology and its application in aeronautics and astronautics[J]. Journal of Experimental Mechanics, 2012, 27(5): 517-526. (in Chinese) 卿新林, 王奕首, 赵琳. 结构健康监测技术及其在航空航天领域中的应用[J]. 实验力学, 2012, 27(5): 517-526.
[10] Wang Q, Yuan S F. Amplifying signal and imaging damage method for active Lamb wave structure health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1062-1067. (in Chinese) 王强, 袁慎芳. 主动Lamb波结构健康监测中信号增强与损伤成像方法[J]. 航空学报, 2008, 29(4): 1062-1067.
[11] Auweraer H V D, Peeters B. International research projects on structural health monitoring: an overview[J]. Structural Health Monitoring, 2003, 2(4): 341-358.
[12] Benedetti I, Aliabadi M H, Milazzo A. A fast BEM for the analysis of damaged structures with bonded piezoelectric sensors[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9): 490-501.
[13] Malinowski P, Wandowski T, Ostachowicz W. Damage detection potential of a triangular piezoelectric configuration[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2722-2732.
[14] Moore E Z, Nichols J M, Murphy K D. Model-based SHM: demonstration of identification of a crack in a thin plate using free vibration data[J]. Mechanical Systems and Signal Processing, 2012, 29(4): 284-295.
[15] Pohl J, Willberg C, Gabbert U, et al. Experimental and theoretical analysis of Lamb wave generation by piezoceramic actuators for structural health monitoring[J]. Experimental Mechanics, 2012, 52(4): 429-438.
[16] Ostachowicz W, Kudela P, Radzienski M. Guided wavefield images filtering for damage localization[J]. Key Engineering Materials, 2013, 558: 92-98.
[17] Chatzi E N, Smyth A W. Particle filter scheme with mutation for the estimation of time-invariant parameters in structural health monitoring applications[J]. Structural Control and Health Monitoring, 2013, 20(7): 1081-1095.
[18] Liu X L, Jiang Z W, Ji L. Investigation on the design of piezoelectric actuator/sensor for damage detection in beam with Lamb waves[J]. Experimental Mechanics, 2013, 53(3): 485-492.
[19] Bader R. Evolution of the aircraft structural integrity program[C]//2009 Aircraft Structural Integrity Program (ASIP) Conference. San Antonio: The San Antonio Air Logistics Center Aircraft Directorate, 2009.
[20] Hoeppner D W. ASM handbook (Vol.19): fatigue and fracture[M]. Russel: ASM International, 1997: 9-13.
[21] Hoeppner D W. Fretting fatigue considerations in holistic structural integrity based design processes (HLOSIP)—a continuing evolution[J]. Tribology International, 2011, 44(11): 1364-1370.
[22] Hoeppner D W. The formation/nucleation of fatigue cracks in aircraft structural materials[C]//The 26th Symposium of the International Committee on Aeronautical Fatigue. Montreal: Springer, 2011: 219-229.
[23] Honeycutt K, Brooks C, Prost-Domasky S, et al. Holistic life assessment methods[C]//Canadian Aeronautics and Space Institute 50th AGM and 16th Aerospace Structures and Materials Symposium Conference. Montreal: Springer, 2003: 1-24.
[24] Brot A. A critical review of damage-tolerance methodology by means of a probabilistic simulation of the fatigue process[C]//Fatigue in New and Ageing Aircraft-Proceedings of the 19th Symposium of the ICAF. Edinburgh: Springer, 1997: 403-420.
[25] Kaplan M P, Wolff T A. ASM metals handbook (Vol.19): fatigue and fracture[M]. [S.l.]: ASM International, 1996: 557-565.
[26] Bockenheimer C. SMIST—structural monitoring with advanced integrated sensor technologies[C]//Aeronautic Days.Vienna: Springer, 2006.
[27] Woodward M R, McConnell J C, Burt R J. Structural prognostics and health management (SPHM) for the F-35 Lightning II[C]//2009 Aircraft Structural Integrity Program (ASIP) Conference. San Antonio: The San Antonio Air Logistics Center Aircraft Directorate, 2009.
[28] Boller C, Buderath M. Fatigue in aerostructures—where structural health monitoring can contribute to a complex subject[J]. Philosophical Transactions of The Royal Society A: Mathernatical Physical and Engineering Sciences, 2007, 365(1851): 561-587.
[29] Speckmann H, Brousset C. Structural health monitoring (SHM)—a future alternative to conventional NDT[C]//ATA's 49th Annual NDT Forum. Fort Worth: America Air Transport Association, 2006.
[30] Speckmann H, Daniel J P. Structural health monitoring for airliner, from research to user requirements, a European view, AIAA-2004-6742[R]. Reston: AIAA, 2004.
[31] Speckmann H, Henrich R. Structural health monitoring (SHM)—overview on technologies under development[C]//16th World Conference on NDT. Montréal: Canadian Institute for NDE, 2004.
[32] Qiu L, Yuan S F, Wang Q, et al. Design and experiment of PZT network-based structural health monitoring scanning system[J]. Chinese Journal of Aeronautics, 2009, 22(5): 505-512.
[33] Qiu L,Yuan S F, Su Y Z, et al. Multiple impact source imaging and localization on composite structure based on shannon complex wavelet and time reversal focusing[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2417-2424. (in Chinese) 邱雷, 袁慎芳, 苏永振, 等. 基于Shannon复数小波和时间反转聚焦的复合材料结构多源冲击成像定位方法[J]. 航空学报, 2010, 31(12): 2417-2424.
[34] Chen X M, Li X L, Zeng W, et al. Investigation of fiber bragg grating for dynamic strain measurement[J]. Aviation Metrology & Measurement Technology, 2002(6): 3-7. (in Chinese) 陈晓梅, 李新良, 曾吾, 等. 用纤内Bragg光栅进行动态应变测量的研究[J]. 航空计测技术, 2002(6): 3-7.
[35] Lv Z G, Qi Y J, Liu M B, et al. New strategies for enhancing both safety and economics of aircraft structure[J]. China Civil Aviation, 2009(103): 56-59. (in Chinese) 吕志刚, 戚燕杰, 刘马宝, 等. 提高飞机结构安全性与经济性的新对策——ICMS技术对保证飞机结构安全与经济使用的重大作用[J]. 中国民用航空, 2009(103): 56-59.
/
〈 | 〉 |