ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Theoretical Methodology for Laminated Composite Strength Including In-situ Effect
Received date: 2013-12-09
Revised date: 2014-05-13
Online published: 2014-06-06
Supported by
Aeronautical Science Foundation of China (20120953010)
In order to accurately predict the failure initiation and propagation for composite laminates, a strength theory including in-situ effect is developed. The method deals with the determination of in-situ strength, damage initiation and material properties degradation. The theory of the in-situ strength, based upon the principle of fracture mechanics and certain assumptions, divides the laminate into embedded thick ply, embedded thin ply and outer surface ply and provides them with different calculation methods. An intralaminar failure initiation criterion including in-situ strength is proposed and the corresponding failure analysis procedure is developed. The predictions of failure envelopes for unidirectional and multidirectional laminates are conducted. The results show that the developed method predicts the structural failure initiation and captures the experimental phenomena from the initiation to the final failure pretty well. The prediction accuracy is significantly improved compared to the wide applied Hashin criterion. The strength analysis result for a quasi-isotropic laminate shows that the failure onset envelope agrees well with the experiment when in-situ strength is used, which necessitates the consideration of in-situ effect in composites structural strength analysis.
LI Biao , LI Yazhi , Yang Fan . Theoretical Methodology for Laminated Composite Strength Including In-situ Effect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(11) : 3025 -3036 . DOI: 10.7527/S1000-6893.2014.0101
[1] Tay T E, Liu G, Yudhanto A, et al. A micro-macro approach to modeling progressive damage in composite structures[J]. International Journal of Damage Mechanics, 2008, 17(1): 5-28.
[2] Tsai S W, Wu E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80.
[3] Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464.
[4] Hashin Z. Failure criteria for unidirectional fibre composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[5] Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7): 1045-1067.
[6] Huang Z M. A bridging model prediction of the ultimate strength of composite laminates subjected to biaxial loads[J]. Composites Science and Technology, 2004, 64(3): 395-448.
[7] Wang C S, Chen P H, Sui X D, et al. Multi-spar composite box design and its post-buckling analysis[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 174-179. (in Chinese) 王春寿, 陈普会, 隋晓东, 等. 复合材料多墙盒段的设计与后屈曲性能[J]. 复合材料学报, 2013, 30(5): 174-179.
[8] Yao Z H, Li Y Z, Liu X D, et al. Effectively calculating residual compressive strength of composite laminate after impact (CAI)[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 518-523. (in Chinese) 姚振华, 李亚智, 刘向东, 等. 复合材料层合板低速冲击后剩余压缩强度研究[J]. 西北工业大学学报, 2012, 30(4): 518-523.
[9] Zhong X D, Chen P H, Liu L Y, et al. Panel splices design and analysis of double bubble intersection in composite pressure cabin[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2357-2363. (in Chinese) 钟小丹, 陈普会, 刘利阳, 等. 复合材料增压舱双圆截面交点连接设计分析[J]. 航空学报,2013, 34(10): 2357-2363.
[10] Yao L J, Zhao M Y, Wan X P. Parameter analysis of composite laminates with patched reinforcement based on CDM-CZM[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 666-671. (in Chinese) 姚辽军, 赵美英, 万小朋. 基于CDM-CZM的复合材料补片补强参数分析[J]. 航空学报, 2012, 33(4): 666-671.
[11] Davila C G, Camanho P P, Rose C A. Failure criteria for FRP laminates[J]. Journal of Composite Materials, 2005, 39(4): 323-345.
[12] Pinho S T, Darvizeh R, Robinson P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2313-2341.
[13] Parvizi A, Garrett K, Bailey J. Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates[J]. Journal of Material Science, 1978, 13(1): 195-201.
[14] Dvorak G J, Laws N. Analysis of progressive matrix cracking in composite laminates II. First ply failure[J]. Journal of Composite Materials, 1987, 21(4): 309-329.
[15] Flaggs D L, Kural M H. Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates[J]. Journal of Composite Materials, 1982, 16(2): 103-116.
[16] Sun C T, Tao J. Prediction of failure envelopes and stress/strain behaviour of composite laminates[J]. Composites Science and Technology, 1998, 58(7): 1125-1136.
[17] Rotem A. Prediction of laminate failure with the Rotem failure criterion[J]. Composites Science and Technology, 1998, 58(7): 1083-1094.
[18] Chang K Y, Llu S, Chang F K. Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings[J]. Journal of Composite Materials, 1991, 25(3): 274-301.
[19] Camanho P P, Davila C G, Pinho S T, et al. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites: Part A, 2006, 37(2): 165-176.
[20] Crossman F W, Warren W J, Wang A S D, et al. Initiation and growth of transverse cracks and edge delamination in composite laminates Part 2. Experimental correlation[J]. Journal of Composite Materials, 1980, 14(1): 88-108.
[21] Argon A S. Fracture of composites[J]. Treatise on Materials Science and Technology, 1972(1): 79-114.
[22] Daniel I M, Luo J J, Schubel P M, et al. Interfiber/interlaminar failure of composites under multi-axial states of stress[J]. Composites Science and Technology, 2009, 69(6): 764-771.
[23] Swanson S R, Qian Y. Multiaxial characterization of T800/3900-2 carbon/epoxy composites[J]. Composites Science and Technology, 1992, 43(2): 197-203.
[24] Koerber H, Xavier J, Camanho P P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation[J]. Mechanics of Materials, 2010, 42(11): 1004-1019.
[25] Shuart M J. Failure of compression-loaded multidirectional composite laminates[J]. AIAA Journal, 1989, 27(9): 1274-1279.
[26] Soden P D, Hinton M J, Kaddour A S. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates[J]. Composites Science and Technology, 1998, 58(7): 1011-1022.
/
〈 | 〉 |