ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Air data assisted attitude algorithm based on fuzzy adaptive Kalman filter
Received date: 2014-04-15
Revised date: 2014-05-20
Online published: 2014-06-03
Supported by
National Natural Science Foundation of China (91116002, 91216304, 61333011, 61121003)
Aimed at solving problems that accelerometers cannot be utilized in maneuvering carriers to modify its horizontal attitude and that noise statistical properties change with the actual working conditions in low accuracy attitude and heading reference system (AHRS), an air data assisted attitude calculating method based on fuzzy adaptive Kalman filter is proposed. Firstly, for assisting horizontal attitude calculation, an attitude algorithm is presented to make use of air data, such as true airspeed, angle of attack and sideslip angle information to compensate maneuvering acceleration, combining the advantages of both air data system and AHRS. Secondly, estimating and modifying parameters of the observer model and system characteristics is processed based on fuzzy adaptive Kalman filter in order to realize optimal estimation of horizontal attitude. Finally, simulation of flight test data from a type aircraft flight is conducted. Simulation results demonstrate that the accuracy of attitude angels reaches 1.3 °, and it plays a significant role in correcting large deviations. Thus, to non-compensated maneuvering acceleration algorithm and conventional Kalman filter, this method is superior in attitude estimation and has practical value.
Key words: attitude algorithm; air data system; fuzzy logic; adaptive algorithm; Kalman filter
LI Wen , LI Qingdong , LI Liang , CHEN Jian , REN Zhang , LIAN Chengbin , WANG Haoliang . Air data assisted attitude algorithm based on fuzzy adaptive Kalman filter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1267 -1274 . DOI: 10.7527/S1000-6893.2014.0105
[1] Gao Z Y, Niu X J, Guo M F. Quaternion-based Kalman filter for micro-machined strapdown attitude heading reference system[J]. Chinese Journal of Aeronautics, 2002, 15(3): 171-175.
[2] Fu J G, Wang X T, Ma Y, et al. Study on optimal estimation algorithm for autonomous attitude determination[J]. Acta Aeronoutica et Astronautica Sinica, 2005, 26(5): 594-597 (in Chinese) . 傅建国, 王孝通, 马野, 等. 自主姿态测量最优算法研究[J]. 航空学报, 2005, 26(5): 594-597.
[3] Yuan Y H, Li S H, Nan J. Attitude algorithm design of AHRS based on Kalman filter[J]. Chinese Journal of Sensors and Actuators, 2011, 24(12): 1718-1722 (in Chinese). 苑艳华, 李四海, 南江. 基于卡尔曼滤波器的航姿系统测姿算法研究[J]. 传感技术学报, 2011, 24(12): 1718-1722.
[4] Liu J X. The research of micro inertial attitude heading reference system based on MTi[D]. Harbin: Harbin Engineering University, 2008 (in Chinese) . 刘珺琇. 基于 MTi 微惯性航姿系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[5] Yan L B, Jia W M, Yao M L, et al. Low-cost attitude estimation based on extended Kalman filter for satcom-on-the-move[J]. Electronics Optics & Control, 2013, 20(7): 53-57 (in Chinese). 闫林波, 贾维敏, 姚敏立, 等. 基于扩展卡尔曼滤波的动中通低成本姿态估计[J]. 电光与控制, 2013, 20(7): 53-57.
[6] Wang W, Sui L N. Multi-sensor information fusion for airborne navigation system of fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2009, 17(3): 313-318 (in Chinese). 王巍, 隋丽娜. 光纤陀螺机载导航系统多信息融合[J]. 中国惯性技术学报, 2009, 17(3): 313-318.
[7] Li J, Lu Z D, Chen P, et al. The study of in-flight for INS based on air data[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 1-4 (in Chinese). 黎杰, 陆志东, 陈璞, 等. 大气辅助惯导空中对准研究[J]. 弹箭与制导学报, 2011, 31(4): 1-4.
[8] Li R B, Yu Y J, Liu J Y, et al. Research on SINS /GPS integrated navigation system with air data system[J]. Chinese Journal of Scientific Instrument, 2012, 33(9): 1961-1966 (in Chinese). 李荣冰, 于永军, 刘建业, 等. 大气辅助的SINS/GPS组合导航系统研究 [J]. 仪器仪表学报, 2012, 33(9): 1961-1966.
[9] Zhu S H, Wang F, Guo Z X, et al. A new air data attitude and heading reference system algorithm applied to high-dynamic guidance flight [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 14-16 (in Chinese). 朱少华, 汪芳, 郭志想, 等. 一种适用于高动态制导飞行的大气航姿系统算法[J]. 弹箭与制导学报, 2011, 31(4): 14-16.
[10] Tian Y, Sun J H, Li J H, et al. Algorithm for the adaptive Kalman filter in AHRS[J]. Journal of Xidian University, 2011, 38(6): 103-107 (in Chinese). 田易, 孙金海, 李金海, 等. 航姿参考系统中一种自适应卡尔曼滤波算法[J]. 西安电子科技大学学报, 2011, 38(6): 103-107.
[11] Guo P F, Ren Z, Qiu H T, et al. Maneuvering acceleration assisted extended Kalman filter for attitude and heading reference system[J]. Systems Engineering and Electronics, 2009, 31(3): 625-628 (in Chinese). 郭鹏飞, 任章, 邱海韬, 等. 机动加速度辅助的航姿系统扩展卡尔曼滤波[J]. 系统工程与电子技术, 2009, 31(3): 625-628.
[12] Xin G, Li S H, Yuan Y H. Research on algorithm for strapdown attitude heading reference system based on maneuver detection[J]. Measurement & Control Technology, 2012, 31(5): 37-40 (in Chinese). 辛格, 李四海, 苑艳华. 基于机动检测的捷联航姿算法研究[J]. 测控技术, 2012, 31(5): 37-40.
[13] Zhang J, Wang D B, Sheng H L. Research on quaternion micro strapdown AHRS based on MEMS[J].Servo Control, 2012(3): 70-73 (in Chinese). 张杰, 王道波, 盛汉霖. 基于 MEMS 传感器的四元数微型捷联航姿系统研究[J]. 伺服控制, 2012(3): 70-73.
[14] Han J Q, Yuan L L. The discrete form of tracking-differentiator[J]. Journal of System Science and Mathematical, 1999, 19(3): 268-273 (in Chinese). 韩京清, 袁露林. 跟踪微分器的离散形式[J]. 系统科学与数学, 1999, 19(3): 268-273.
[15] Chen X L, Li P, Song S M. The multi-sensor information fusion based on fuzzy adaptive Kalman filter[J]. Aerospace Control, 2011, 29(1): 19-22 (in Chinese). 陈兴林, 李鹏, 宋申民. 基于模糊自适应卡尔曼滤波算法的多传感器信息融合[J]. 航天控制, 2011, 29(1): 19-22.
[16] Escamilla-Ambrosio P J, Mort N. Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment[C]//Proceedings of the 5th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2002: 1542-1549.
[17] Sasiadek J Z, Wang Q, Zeremba M B. Fuzzy adaptive Kalman filtering for INS/GPS data fusion[C]//Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Piscataway, NJ: IEEE, 2000: 181-186.
[18] Xu T L, You W H, Cui P Y. Research on GPS/INS integrated navigation system based on fuzzy adaptive Kalman filtering[J]. Journal of Astronautics, 2005, 26(5): 571-575 (in Chinese). 徐田来, 游文虎, 崔平远. 基于模糊自适应卡尔曼滤波的 INS/GPS 组合导航系统算法研究[J]. 宇航学报, 2005, 26(5): 571-575.
/
〈 | 〉 |