ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Tool Position Feasible Area of Torus tool in Machining Blade Root Transitional Surfaces
Received date: 2014-02-10
Revised date: 2014-04-14
Online published: 2014-04-28
Supported by
National Science and Technology Major Project (2013ZX04011031)
The integral interference happens frequently when machining transitional surfaces using torus tool, the main reason is the lack of the research on the tool position feasible area of complex torus tool in complex surface machining. Although the conventional optimization method may be competent in searching feasible tool position in large area, it is time-consuming. In order to avoid the interference between tool and transitional surface and improve the machining efficiency at the same time, a tool position optimization algorithm that is more suitable for the structure feature of this area is researched, so that the transitional surface can be strip-width maximization machined integrally without interference. Through the research on the feasible tool position of typical blade transitional surface, it is found that the shape of feasible area of tool position is scutellate, and the tool positions with the maximum machining strip width are located on the two bottom boundaries of the scutellate area, sometimes located on the endpoints of the boundaries. According to this principle, an optimal tool position searching method is proposed—searching along the bottom boundaries of the scutellate area, and optimizing the application of feasible area to obtain high machining efficiency. A certain aero-engine blade is taken as an example for calculation of tool position optimization and simulation and machining experiment to verify the validity of this method in machining the transitional surfaces of blade root area.
SHI Wei , NING Tao , CHEN Zhitong . Tool Position Feasible Area of Torus tool in Machining Blade Root Transitional Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3470 -3479 . DOI: 10.7527/S1000-6893.2014.0050
[1] Cai Y L, Xi G, Wang S J. The generation of tool path for clean-up machining of impeller[J]. Mechanical Design, 2001, 18(11): 37-40. (in Chinese) 蔡永林, 席光, 王尚锦. 叶轮加工中清根刀心轨迹的生成[J]. 机械设计, 2001, 18(11): 37-40.
[2] Liu C M, Yan G R, Xu H F. The research of automatic clean-up tool-path generation based on stock-remaining model[J]. Journal of Engineering Graphics, 2001, 22(1): 39-46. (in Chinese) 刘长明, 闫光荣, 许鹤峰. 基于留量模型的自动清根技术的研究[J]. 工程图学学报, 2001, 22(1): 39-46.
[3] Robert G, Lin T W, Lin A C. Planning of tool orientation for five-axis cavity machining[J]. The International Journal of Advanced Manufacturing Technology, 2003, 22(1-2): 150-160.
[4] Zhu W H, Lee Y S. Five-axis pencil-cut planning and virtual prototyping with 5-DOF haptic interface[J]. Computer-Aided Design, 2004, 36(13): 1295-1307.
[5] Ren Y F, Yau H T, Lee Y S. Clean-up tool path generation by contraction tool method for machining complex polyhedral models[J]. Computers in Industry, 2004, 54(1): 17-33.
[6] Hu H B. The research of the algorithm of four-axis blade clean-up machining and process plan optimizing[D]. Xi'an: Northwestern Polytechnical University, 2005. (in Chinese) 胡海滨. 叶片四轴清根加工算法及工艺优化方案研究[D]. 西安: 西北工业大学, 2005.
[7] Tang M, Zhang D H, Luo M, et al. Tool path generation for clean-up machining of impeller by point-searching based method[J]. Chinese Journal of Aeronautics, 2012, 25(1): 131-136.
[8] Ni Y R. Optimal torus-shaped end-mill orientation control for 5-axis sculptured structure NC machining and graphics simulation[D]. Beijing: Beihang University, 1999. (in Chinese) 倪炎榕. 环面刀具五坐标数控加工复杂曲面优化刀位计算与图形显示[D]. 北京: 北京航空航天大学, 1999.
[9] Xu R F. Research on tool position error calculation and tool path planning methods in 5-axis machining of sculptured surfaces[D]. Beijing: Beihang University, 2010. (in Chinese) 徐汝锋. 宽行加工刀位误差求解与刀轨规划技术研究[D]. 北京: 北京航空航天大学, 2010.
[10] Xu R F, Chen W Y, Chen Z T. A tool positioning algorithm through longitude separation approach for a cutter with non-circle generatrix[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 410-417. (in Chinese) 徐汝锋, 陈五一, 陈志同. 基于经线划分的非圆截面环形刀具刀位优化算法[J]. 航空学报, 2010, 31(2): 410-417.
[11] Li Z Q, Chen Z T, Xiao J. Latitude distribution algorithm of cutter position optimization on drum-like cutter for strip-maximization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 731-735. (in Chinese) 李正强, 陈志同, 肖俊. 鼓形刀宽行刀位优化纬线分割算法[J]. 北京航空航天大学学报, 2007, 33(6): 731-735.
[12] Ni Y R, Ma D Z, Zhang H, et al. Optimal orientation control for torus tool 5-axis sculptured surface NC machining[J]. Chinese Journal of Mechanical Engineering, 2001, 37(2): 87-91. (in Chinese) 倪炎榕, 马登哲, 张洪, 等. 圆环面刀具五坐标数控加工复杂曲面优化刀位算法[J]. 机械工程学报, 2001, 37(2): 87-91.
[13] Yan J Y, Chen Z T, He Y. A quick calculation method of tool position error based on envelop theory[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 2131-2139. (in Chinese) 颜家勇, 陈志同, 贺英. 基于包络理论的刀位误差快速求解算法[J]. 航空学报, 2011, 32(11): 2131-2139.
[14] Li Z B, Chen Z T, Wang S, et al. 5-axis machining technology of turbine blade's root area in stripe-width-maximation method with torus cutter[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1722-1731. (in Chinese) 李志兵, 陈志同, 王爽, 等. 基于环面刀具的叶片过渡区域宽行加工技术[J]. 航空学报, 2011, 32(9): 1722-1731.
[15] Wang X W. The strip-width maximization machining algorithm based on tool center-driven with torus cutter[D]. Beijing: Beihang University, 2013. (in Chinese) 王小文. 基于刀心驱动的环面刀具加工算法[D]. 北京: 北京航空航天大学, 2013.
[16] Yan J Y. Research on the strip-with maximization machining algorithm based on surface sectional curves discretization[D]. Beijing: Beihang University, 2011. (in Chinese) 颜家勇. 基于曲面截型线分划的宽行加工算法研究[D]. 北京: 北京航空航天大学, 2011.
/
〈 | 〉 |