Electronics and Control

Iterative Shrinkage Thresholding Radar Forward-looking Imaging Method

  • JIAO Shuhong ,
  • TANG Lin ,
  • QI Huan ,
  • LIU Xue
Expand
  • 1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
    2. The Unit 92941 of PLA, Huludao 125000, China

Received date: 2014-01-22

  Revised date: 2014-04-25

  Online published: 2014-04-28

Supported by

National Natural Science Foundation of China (61201410)

Abstract

Aimed at the airborne multi-channel scanning radar forward looking imaging problem, the mono-channel forward looking imaging method using iterative shrinkage thresholding algorithm is researched. An extended multi-channel iterative shrinkage thresholding algorithm is proposed for multi-channel forward-looking imaging problem. Its convergence is proven theoretically and a speed up method is also given. First, the optimal solution of multi-channel radar in the sense of minimum mean square error is obtained by the weighted superposition of each channel, and then the sparse solution access to the optimal solution in the corresponding sparse constraints is obtained using the target sparse representation. Theoretical analysis and simulation results show that the new method has obvious advantages in algorithm stability, scenes recovery ability and noise immunity compared with the pre-existing scanning radar forward-looking imaging methods.

Cite this article

JIAO Shuhong , TANG Lin , QI Huan , LIU Xue . Iterative Shrinkage Thresholding Radar Forward-looking Imaging Method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3384 -3391 . DOI: 10.7527/S1000-6893.2014.0073

References

[1] Qiu X L, Hu D H, Ding C B. Some reflections on bistatic SAR of forward-looking configuration[J]. IEEE of Geoscience and Remote Sensing Letters, 2008, 5(4): 735-739.

[2] Walterscheid I, Espeter T, Klare J, et al. Potential and limitations of forward-looking bistatic SAR[C]//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, NJ: IEEE, 2010: 216-219.

[3] Mittermayer J, Wendler M, Krieger G, et al. Sector imaging radar for enhanced vision (SIREV): simulation and processing techniques[C]//2000 Enhanced and Synthetic Vision. Orlando, FL: SPIE, 2000: 298-305.

[4] Liang Y, Wang H X, Zhang L, et al. An approach to forward looking FMCW radar imaging based on two-dimensional Chirp-Z transform[J]. Science China Information Sciences, 2010, 53(8): 1653-1665..

[5] Hou H P, Qu C W, Yang J, et al. Improved forward-looking imaging method for airborne array FMCW SAR[J]. Chinese Journal of Radio Science, 2011, 26(5): 944-950. (in Chinese) 侯海平, 曲长文, 杨俭, 等. 改进的机载阵列调频连续波合成孔径雷达前视成像方法[J]. 电波科学学报, 2011, 26(5): 944-950.

[6] Richards M A. Iterative noncoherent angular superresolution [radar][C]//Proceedings of the 1988 IEEE National Radar Conference. Piscataway, NJ: IEEE, 1988: 100-105.

[7] Li Y L. The imaging techniques of missile-borne synthetic aperture radar[D]. Changsha: National University of Defense Teehnology, 2008. (in Chinese) 李悦丽. 弹载合成孔径雷达成像技术研究[D]. 长沙: 国防科学技术大学, 2008.

[8] Jin C G, Huang Y L, Yang J Y, et al. Improving angular resolution based on maximum a posteriori criterion for scanning radar[C]//2012 IEEE Radar Conference (RADAR). Piscataway, NJ: IEEE, 2012: 451-454.

[9] Zha Y, Huang Y, Yang J, et al. An improved angular super-resolution approach based on constrained optimization[C]//2013 IEEE International Conference on Communications Workshops (ICC). Piscataway, NJ: IEEE, 2013: 931-935.

[10] Lacomme P, Marchais J, Hardange J, et al. Air and spaceborne radar systems: an introduction[M]. London: Access Online via Elsevier, 2001: 202-206.

[11] Berenstein C A, Patrick E V. Exact deconvolution for multiple convolution operators-an overview, plus performance characterizations for imaging sensors[J]. Proceedings of the IEEE, 1990, 78(4): 723-734.

[12] Miller C S. Enhanced angle resolution in scanning beam systems[C]//Proceedings of 1995 Aerospace Applications Conference. Piscataway, NJ: IEEE, 1995: 333-341.

[13] Zhang Y, Huang Y L, Yang J Y. Analysis of the limit to superresolution in real aperture scanning radar[C]//2013 International Conference on Radar. Piscataway, NJ: IEEE, 2013: 403-406.

[14] Zhou D L, Huang Y L, Yang J Y. Radar angular superresolution algorithm based on Bayesian approach[C]//2010 IEEE 10th International Conference on Signal Processing (ICSP). Piscataway, NJ: IEEE, 2010: 1894-1897.

[15] Li H. A research of real aperture radar beam-sharpening algorithms[D]. Chengdu: University of Electronic Science and Technology of China, 2010. (in Chinese) 李惠. 实孔径雷达波束锐化算法研究[D]. 成都: 电子科技大学, 2010.

[16] Yang Z W, He S, Liao G S. Forward-looking detection for airborne single-channel radar with beam scanning[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2240-2245. (in Chinese) 杨志伟, 贺顺, 廖桂生. 机载单通道雷达实波束扫描的前视探测[J]. 航空学报, 2012, 33(12): 2240-2245.

[17] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.

[18] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.

Outlines

/