ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Static shape control of piezoelectric smart reflector and optimization of actuators' placement
Received date: 2014-02-28
Revised date: 2014-04-16
Online published: 2014-04-25
Supported by
Project Development Plan of Science and Technology of Jilin Province (20130102018JC)
In order to improve the precision of reflector, the static shape control model of smart reflector is presented, and the methods of structural mechanics modeling and shape control and the optimization algorithms of actuators' placement are investigated. Firstly, the smart reflector with the honeycomb core is modeled with the equivalent laminate plate theory, and the finite element formulation of flexible piezoelectric smart reflector is derived according to virtual work theory. Then, the relationship between mean square root error of reflector's deformation and control voltages of actuators is derived, and the optimization model for static shape control is created with the objective of minimizing mean square root error of shape, and the optimization of control voltage can be transformed to a constrained optimization problem. The actuator's placement is implemented using simulated annealing algorithm. Finally, a numerical example of plane piezoelectric smart reflector with a diameter of 300 mm is given to demonstrate the feasibility of shape control model and the effectiveness of optimization algorithm. Simulation results indicate that the square root error of smart reflector's deformation under gravity can be reduced by above 97% by controlling the piezoelectric actuators, and the actuators can be placed in the optimal position for a given number actuators using simulated annealing algorithm.
CAO Yuyan , WANG Zhi , ZHOU Chao , FAN Lei , WU Qinglin . Static shape control of piezoelectric smart reflector and optimization of actuators' placement[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(2) : 527 -537 . DOI: 10.7527/S1000-6893.2014.0061
[1] Fan L, Zhang J X, Wu X X, et al. Optimum design of edge lateral support for large aperture lightweight primary mirror[J]. Optics and Precision Engineering, 2012, 20(10): 2207-2213 (in Chinese). 范磊, 张景旭, 吴小霞, 等. 大口径轻量化主镜边缘侧向支撑的优化设计[J]. 光学精密工程, 2012, 20(10): 2207-2213.
[2] Liu S T, Hu R, Dong Z G, et al. Topologic optimization for configration design of web-skin-type ground strucutre based large-aperture space mirror[J]. Optics and Precision Engineering, 2013, 21(7): 1803-1810 (in Chinese). 刘书田, 胡瑞, 董志刚, 等. 基于筋板式基结构的大口径空间反射镜构型设计的拓扑优化方法[J]. 光学精密工程, 2013, 21(7): 1803-1810.
[3] Zeng C M, Guo P J, Yu J C. Demonstration and analysis on correction of 0. 5 m ultra-thin mirror with active supports[J]. Optics and Precision Engineering, 2010, 18(3): 570-578 (in Chinese). 曾春梅, 郭培基, 余景池. 0.5 m 超薄镜主动支撑面形校正及实验[J]. 光学精密工程, 2010,18(3): 570-578.
[4] Li H Z, Lin X D, Liu X Y, et al. Experiment system of 400 mm thin-mirror active optics[J]. Optics and Precision Engineering, 2009, 17(9): 2076-2083 (in Chinese). 李宏壮, 林旭东, 刘欣悦, 等. 400 mm薄镜面主动光学实验系统[J]. 光学精密工程, 2009, 17(9): 2076-2083.
[5] Chen P C, Romeo R C. Advances in composite mirror and telescope technology[J]. Proceedings of SPIE, 2004,5382: 397-403.
[6] Chen P C, Bowers C W, Content D A, et al. Advances in very lightweight composite mirror technology[J]. Optical Engineering, 2000, 39(9): 2320-2329.
[7] Johannes K D, Robert H, von Mathias A, et al. Development and manufacture of an adaptive lightweight mirror for space application[J]. Smart Materials and Structures, 2003, 12(6): 1005-1016.
[8] Chee C, Tong L, Steven G. A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation[J]. Computers & Structures, 2000, 77(3): 253-268.
[9] Chee C, Tong L, Steven G P. Static shape control of composite plates using a slope-displacement based algorithm[J]. AIAA Journal, 2002, 40(8): 1611-1618.
[10] Moita J S, Martins P G, Soares C M M, et al. Optimal dynamic control of laminated adaptive structures using a higher order model and a genetic algorithm[J]. Computers & Structures, 2008, 86(3-5): 198-206.
[11] Roy T, Chakraborty D. Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm[J]. Journal of Sound and Vibration, 2009, 319(1-2): 15-40.
[12] Bruch J C, Jr, Sloss J M, Adali S, et al. Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams[J]. Smart Materials and Structures, 2000, 9(2): 205-211.
[13] Andoh F, Washington G, Yoon H S, et al. Efficient shape control of distributed reflectors with discrete piezoelectric actuators[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(1): 3-15.
[14] Deng N C, Zou Z Z. Static shape control of intelligent beam structure[J]. Chinese Journal of Applied Mechanics, 2003, 20(2): 129-132 (in Chinese). 邓年春, 邹振祝. 智能梁的静态形状控制[J]. 应用力学学报, 2003, 20(2): 129-132.
[15] Tang J Y, Huang H, Xia R W, et al. Static shape control of adaptive structure using composite laminated piezoelectric element[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2): 239-243 (in Chinese). 唐纪晔, 黄海, 夏人伟, 等. 压电层合板自适应结构的静力变形控制[J]. 北京航空航天大学学报, 2000, 26(2): 239-243.
[16] Wang J, Yang Y D, Zhang J Y, et al. Investigation of piezoelectric actuator optimal configuration for structural vibration control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 494-500 (in Chinese). 王军, 杨亚东, 张家应, 等. 面向结构振动控制的压电作动器优化配置研究[J]. 航空学报, 2012, 33(3): 494-500.
[17] Mello L A M, Kiyono C Y, Nakasone P H, et al. Design of quasi-static piezoelectric plate based transducers by using topology optimization[J]. Smart Materials and Structures, 2014, 23(2): 1-12.
[18] Kögl M, Silva E C N. Topology optimization of smart structures: Design of piezoelectric plate and shell actuators[J]. Smart Materials and Structures, 2005,14(2): 387-399.
[19] Kang Z, Tong L. Topology optimization-based distribution design of actuation voltage in static shape control of plates[J]. Computers & Structures, 2008, 86(19-20): 1885-1893.
[20] Masters I G, Evans K E. Models for the elastic deformation of honeycombs[J]. Composite Structures, 1996, 35(4): 403-422.
[21] Mehta P K. Moment actuator influence function for flat circular deformable mirrors[J]. Advances in Optical Structure Systems, 1990, 29(10): 1213-1222.
[22] Reddy J N. On laminated composite plates with integrated sensors and actuators[J]. Engineering Structures, 1999, 21(7): 568-593.
[23] Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 1982, 382(1782): 25-42.
[24] Chen D H. Equivalent flexural and torsional rigidity of hexagonal honeycomb[J]. Composite Structures, 2011, 93(7): 1910-1917.
[25] Paradies R, Hertwig M. Shape control of adaptive composite reflectors[J]. Composites Part B: Engineering, 1999, 30(1): 65-78.
[26] Nelson J E, Lubliner J, Mast T S. Telescope mirror supports: plate deflections on point supports[J]. Advanced Technology Optical Telescopes, 1982, 332(10): 212-228.
[27] Paradies R. Designing quasi-isotropic laminates with respect to bending[J]. Composites Science and Technology, 1996, 56(4): 461-472.
/
〈 | 〉 |