ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Modeling of Virtual Grinding Wheel Based on Random Distribution of Multi Abrasive Grains and Prediction of Grinding Force
Received date: 2014-02-26
Revised date: 2014-03-28
Online published: 2014-04-22
Supported by
Science and Technology Plan Projects of Xiamen City (3502Z20131007)
The distribution of abrasive grains existing in diamond grinding wheel surface is firstly measured by a VHX-600E optic microscope. The density of abrasive grains, the actual contact length and the effective number of abrasive grains are then calculated. Based on the assumption of interval distribution of abrasive grains and virtual grid method, the surface of virtual grinding wheel is randomly distributed with multi hexahedron abrasive grains which are equal in density. Besides, the posture of abrasive grains is randomly allocated to simulate the real topography of grinding wheel. The 3D simulated model of virtual grinding is built by importing a 1/4 virtual grinding wheel model into Deform-3D software and the simulated grinding force value of multi grains is obtained by Lagrangian Incremental algorithm. The multi-grain grinding force predictive model is then built with the simulated model. A carbide blade grinding experiment is performed to validate the predictive model by comparing the measured grinding force with the predictive force. The test verifies the accuracy and effectiveness of the proposed model in the paper. This paper provides a new method to investigate the grinding force which is co-grinded by multi-grains.
ZHANG Xianglei , YAO Bin , FENG Wei , SHEN Zhihuang . Modeling of Virtual Grinding Wheel Based on Random Distribution of Multi Abrasive Grains and Prediction of Grinding Force[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3489 -3498 . DOI: 10.7527/S1000-6893.2014.0065
[1] Syoji K. Grinding technology[M]. Guo Y B, Wang Z Z, translated. Beijing: China Machine Press, 2007: 96-97. (in Chinese) 庄司克雄. 磨削加工技术[M]. 郭隐彪, 王振忠, 译. 北京: 机械工业出版社, 2007: 96-97.
[2] Sheng X M. Ultra-high speed grinding technology[M]. Beijing: China Machine Press, 2010: 26-27. (in Chinese) 盛晓敏. 超高速磨削技术[M]. 北京: 机械工业出版社, 2010: 26-27.
[3] Anderson D, Warkentin A, Bauer R. Experimental and numerical investigations of single abrasive-grain cutting[J]. International Journal of Machine Tools and Manufacture, 2011, 51(12): 898-910.
[4] Wang J M, Ye R Z, Tang Y P, et al. 3D dynamic finite element simulation analysis of single abrasive grain during surface grinding[J]. Diamond & Abrasives Engineering, 2009, 173(5): 41-45. (in Chinese) 王君明, 叶人珍, 汤漾平, 等. 单颗磨粒的平面磨削三维动态有限元仿真[J]. 金刚石与磨料磨具工程, 2009,173(5): 41-45.
[5] Su C, Xu L, Liu Y W, et al. Numerical simulation of cutting process of CBN grit based on SPH method[J]. China Mechanical Engineering, 2013, 24 (5): 667-671. (in Chinese) 宿崇, 许立, 刘元伟, 等. 基于SPH法的CBN磨粒切削过程数值模拟[J]. 中国机械工程, 2013, 24 (5): 667-671.
[6] Su C, Hou J M, Zhu L D, et al. Simulation study of single grain cutting based on fluid-solid-interaction method[J]. Journal of System Simulation, 2008, 20(10): 5250-5253. (in Chinese) 宿崇, 侯俊铭, 朱立达, 等. 基于流固耦合算法的单颗磨粒切削仿真研究[J]. 系统仿真学报, 2008, 20(10): 5250-5253.
[7] Duan N, Wang W S, Xu X P, et al. Dynamic simulation of single grain cutting of glass by coupling FEM and SPH[J]. China Mechanical Engineering, 2013, 24(20): 2716-2721. (in Chinese) 段念, 王文珊, 徐西鹏, 等. 基于FEM与SPH耦合算法的单颗磨粒切削玻璃的动态过程仿真[J]. 中国机械工程, 2013, 24(20): 2716-2721.
[8] Yan L, Jiang F, Rong Y M. Grinding mechanism based on single grain cutting simulation[J]. Journal of Mechanical Engineering, 2012, 48(11): 172-182. (in Chinese) 言兰, 姜峰, 融亦鸣. 基于数值仿真技术的单颗磨粒切削机理[J]. 机械工程学报, 2012, 48(11): 172-182.
[9] Cheng Z, Xu J H, Ding W F, et al. Simulation of chip formation in grinding titanium alloy TC4 with single abrasive grit[J]. Diamond & Abrasives Engineering, 2011, 31(2): 17-21. (in Chinese) 程泽, 徐九华, 丁文锋, 等. 单颗磨粒磨削钛合金TC4成屑过程仿真研究[J]. 金刚石与磨料磨具工程, 2011, 31(2): 17-21.
[10] Chen X, Rowe W B. Analysis and simulation of the grinding process. Part I: generation of the grinding wheel surface[J]. International Journal of Machine Tools and Manufacture, 1996, 36(8): 871-882.
[11] Hegeman J B J W. Fundamentals of grinding: surface conditions of ground materials[D]. Netherlands: University of Groningen, 2000.
[12] Warnecke G, Barth C. Optimization of the dynamic behavior of grinding wheels for grinding of hard and brittle materials using the finite element method[J]. CIRP Annals-Manufacturing Technology, 1999, 48(1): 261-264.
[13] Su C, Xu L, Li M G, et al. Study on modeling and cutting simulation of abrasive grains[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2130-2135. (in Chinese) 宿崇, 许立, 李明高, 等. 磨粒建模方法与切削过程仿真研究[J]. 航空学报, 2012, 33(11): 2130-2135.
[14] Su C, Yang J Y, Zhao H H, et al. Development of virtual grinding wheel and its grinding performance analysis[J]. Journal of Computer-Aided Design & Computer Graphics, 2008, 20(5): 560-564. (in Chinese) 宿崇, 杨建宇, 赵恒华, 等. 虚拟砂轮的开发及其磨削性能分析[J]. 计算机辅助设计与图形学学报, 2008, 20(5): 560-564.
[15] Ming X Z, Yan H Z, Chen S H, et al. 3D models of thermo-mechanical coupling of grinding tooth and numerical analysis[J]. Journal of Mechanical Engineering, 2008, 44(5): 17-24. (in Chinese) 明兴祖, 严宏志, 陈书涵, 等. 3D热耦合磨齿模型与数值分析[J]. 机械工程学报, 2008, 44(5): 17-24.
[16] Barge M, Hamdi H, Rech J, et al. Numerical modelling of orthogonal cutting: influence of numerical parameters[J]. Journal of Materials Processing Technology, 2005, 164: 1148-1153.
[17] Gong Y D, Wang B, Wang W S. The simulation of grinding wheels and ground surface roughness based on virtual reality technology[J]. Journal of Materials Processing Technology, 2002, 129(1): 123-126.
[18] Wang Y S, Ding N. The grinding force model of cylindrical traverse grinding[J]. Journal of Changchun University, 2005, 15(6): 1-3. (in Chinese) 王颖淑, 丁宁. 外圆纵向磨削加工磨削力模型[J]. 长春大学学报, 2005, 15(6): 1-3.
[19] Wang L S, Li G F. Modelling and computer simulation for grinding process[J]. China Mechanical Engineering, 2002, 13(1): 1-4. (in Chinese) 王龙山, 李国发. 磨削过程模型的建立及其计算机仿真[J]. 中国机械工程, 2002,13(1): 1-4.
[20] Cao J P, Deng C H, Liu J, et al. Research on the grinding force when machining nanostructured WC/12Co coatings[J]. Diamond & Abrasives Engineering, 2004, 140(2): 5-9. (in Chinese) 曹建平, 邓超辉, 刘建, 等. 纳米结构WC/12Co图层精密磨削的磨削力研究[J]. 金刚石与磨料磨具工程, 2004, 140(2): 5-9.
[21] Song Z T, Yang L X. Calculation of the optimal dosage of grinding at the time of end mill[J]. Journal of Xi'an Institute of Mining, 1991(3): 79-84. (in Chinese) 宋之桐, 杨来侠. 端磨时最优磨削用量的计算[J]. 西安矿业学院学报, 1991(3): 79-84.
[22] Hou Z B, Komanduri R. On the mechanics of the grinding process. Part I: stochastic nature of the grinding process[J]. International Journal of Machine Tools and Manufacture, 2003, 43(15): 1579-1593.
[23] Yan L. Researeh on grinding mechanism of hardened cold-work die steel based on single grain cutting[D]. Changsha: Hunan University, 2010. (in Chinese) 言兰. 基于单颗磨粒切削的淬硬模具钢磨削机理研究[D]. 长沙: 湖南大学, 2010.
[24] Xu J, Lu W Z, Wang H, et al. Characteristics and wear properties of grinding surface of titanium alloy TC4-DT[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2) : 567-573. (in Chinese) 胥军, 卢文壮, 王晗, 等. TC4-DT钛合金磨削表面特性及其摩擦磨损性能[J]. 航空学报, 2014, 35(2): 567-573.
[25] He Q S, Fu Y C, Xu H J, et al. Development of annular heat pipe grinding wheel for high efficiency machining of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1740-1747. (in Chinese) 赫青山, 傅玉灿, 徐鸿钧, 等. TC4钛合金高效磨削加工用环形热管砂轮的研制[J]. 航空学报, 2013, 34(7): 1740-1747.
/
〈 | 〉 |