ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experimental investigation on the vectoring characteristic of dual synthetic jets actuator with asymmetric exits
Received date: 2014-03-21
Revised date: 2014-04-16
Online published: 2014-04-21
Supported by
National Natural Science Foundation of China (11372349); Foundation for the Author of National Excellent Doctor Dissertation of China (201058); Research Fund for the Doctoral Program of Higher Education of China (20104307110007)
The unique vectoring characteristic of dual synthetic jets (DSJ) actuator provides a new way for the synthetic jet technology applied to active flow control. The paper employs a new method to evaluate the vectoring angle of dual synthetic jets based on the velocity vectors in the potential core. The effects of driving parameters (driving voltage and frequency) of piezoelectric dual synthetic jets actuator with asymmetric exits are studied using schlieren and particle image velocimetry (PIV) experiments. The results indicate that dual synthetic jets deflects towards the side of slot with larger sectional area. The vectoring angle gradually increases and then rapidly decreases with the variation of the driving voltage. There is an optimal driving voltage at which the vectoring angle reaches a maximum. The effect of the driving frequency on the vectoring angle is remarkable and complicated. The vectoring angle can be adjusted from 1.53°to 36.65°. There are two peaks of the vectoring angle with the variation of the driving frequency. The minimum vectoring angle is attained when the driving frequency approximates the resonance frequency of the vibrating diaphragm.
DENG Xiong , XIA Zhixun , LUO Zhenbing , LI Yujie . Experimental investigation on the vectoring characteristic of dual synthetic jets actuator with asymmetric exits[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(2) : 510 -517 . DOI: 10.7527/S1000-6893.2014.0063
[1] Glezer A, Amitay M. Syntheticjets[J]. Annual Reviews Fluid Mechanics, 2002, 34: 503-529.
[2] Wang J J, Feng L H, Xu C J. Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet[J]. Science in China Series E: Technological Sciences, 2007, 50(5): 550-559.
[3] Zhang P F, Wang J J, Feng L H. Review on the zero-net-mass-flux jet and the application in separation flow control[J]. Science in China Series E: Technological Sciences, 2008, 51(9): 1315-1344.
[4] Zhang P F, Wang J J. Effect of orifice inclined angle on flow control of the stalled airfoil with synthetic jet actuator[J]. Acta Armamentarii, 2009, 30(12): 1685-1662 (in Chinese). 张攀峰, 王晋军. 孔口倾斜角对合成射流控制翼型流动分离的影响[J]. 兵工学报, 2009, 30(12): 1685-1662.
[5] Feng L H, Wang J J. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point[J]. Journal of Fluid Mechanics, 2010, 662: 232-259.
[6] Gu Y S, Li B B, Cheng K M. Cross flow transfer characteristics of a new beveled synthetic jet actuator and its applications to boundary layer control[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 321-327 (in Chinese). 顾蕴松, 李斌斌, 程克明. 斜出口合成射流激励器横流输运特性与边界层控制[J]. 航空学报, 2010, 31(2): 321-327.
[7] Chen Z Z, Ba Y L, Wang J J. Numerical investigation on separation control for flow over a bump with synthetic jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7): 886-890 (in Chinese). 陈占军, 巴玉龙, 王晋军. 合成射流控制鼓包分离流动的数值模拟[J]. 北京航空航天大学学报, 2012, 38(7): 886-890.
[8] Feng L H, Wang J J. Modification of a circular cylinder wake with synthetic jet: vortex shedding modes and mechanism[J]. European Journal of Mechanics B/Fluids, 2014, 43: 14-32.
[9] Han Z H, Qiao Z D, Song W P. Numerical simulation of active flow control to airfoil stall using local synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1040-1046 (in Chinese). 韩忠华, 乔志德, 宋文萍. 零质量射流推迟翼型失速的数值模拟[J]. 航空学报, 2007, 28(5): 1040-1046.
[10] Feng D M, Chen F, Song Y P, et al. Enhancing aerodynamic performances of highly loaded compressor cascades via air injection[J]. Chinese Journal of Aeronautics, 2009, 22(2): 121-128.
[11] Xu X P, Zhu X P, Zhou Z, et al. Application of active flow control technique for gust load alleviation[J]. Chinese Journal of Aeronautics, 2011, 24(4): 410-416.
[12] Hang P F, Yan B, Dai C F.Lift enhancement method by synthetic jet circulation control[J]. Science in China Series E: Technological Sciences, 2012, 55(9): 2585-2592.
[13] Smith B L, Glezer A. Vectoring and small-scale motions effected in free shear flows using synthetic jet actuators, AIAA-1997-0213[R]. Reston: AIAA, 1997.
[14] Wang D Q, Xia Z X, Luo Z B. Study on low speed primary jet vector controlled by synthetic jet actuator with an inclination angle[J]. Journal of Solid Rocket Technology, 2004, 27(3): 165-168 (in Chinese). 王德全, 夏智勋, 罗振兵. 带倾角合成射流激励器对低速主流矢量控制研究[J]. 固体火箭技术, 2004, 27(3): 165-168.
[15] Luo Z B, Xia Z X. The mechanism of jet vectoring using synthetic jet actuators[J]. Modern Physics Letters B, 2005, 19(28-29): 1619-1622.
[16] Luo Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D]. Changsha: National University of Defense Technology, 2006 (in Chinese). 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D].长沙:国防科学技术大学, 2006.
[17] Xia Z X, Luo Z B. Physical factors of primary jet vectoring control using synthetic jet actuator[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(7): 907-920.
[18] Luo Z B, Xia Z X, Xie Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193-201.
[19] Li N. The flow characteristics of synthetic jet and its application in jet vectoring[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). 李念. 自耦合射流及其对主射流矢量偏转研究[D]. 南京: 南京航空航天大学, 2006.
[20] Lin P J, Gao F, Zhang Z F, et al. Investigation on vector control of adjacent syntheticjet actuators with inclination angle[J]. Journal of Solid Rocket Technology, 2010, 33(1): 58-62 (in Chinese). 林培基, 高峰, 张志峰, 等. 带倾角相邻合成射流激励器射流矢量控制研究[J]. 固体火箭技术, 2010, 33(1): 58-62.
[21] Gu Y S, Li B B, Cheng K M. On the jet vector deflection based on active flow control technique[J]. Journal of Experimental Mechanics, 2012, 27(1): 87-92 (in Chinese). 顾蕴松, 李斌斌, 程克明. 基于主动流动控制的射流矢量偏转技术[J]. 实验力学, 2012, 27(1): 87-92.
[22] Mittal R, Rampunggoon P. On the virtual aeroshaping effect of synthetic jets[J]. Physics of Fluids, 2002, 14(4): 1533-1536.
[23] Deb D, Tao G, Burkholder J O, et al. Adaptive compensation control of synthetic jet actuator arrays for airfoil virtual shaping[J]. Journal of Aircraft, 2007, 44(2): 616-626.
[24] Luo Z B, Xia Z X, Wang Z J, et al. Enhancing fuel/oxygen mixing using synthetic jet actuators[J]. Journal of Propulsion Technology, 2003, 24(2): 166-168(in Chinese). 罗振兵, 夏智勋, 王志吉, 等.应用合成射流技术增强燃气/氧气掺混[J]. 推进技术, 2003, 24(2): 166-168.
[25] Tang X M. Investigation on the flow characteristics and heat transfercharacteristics of the synthetic jet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). 谭晓茗. 自耦合射流流动与换热特性研究[D]. 南京: 南京航空航天大学, 2006.
[26] Luo X B, Liu S, Jiang X P, et al. Experimental and numerical study on a micro jet cooling solution for high power LEDs[J]. Science in China Series E: Technological Sciences, 2007, 50(4): 478-489.
[27] Zhang J Z, Tan X M. Experimental study on flow and heat transfer characteristics of synthetic jet driven by piezoelectric actuator[J]. Science in China Series E: Technological Sciences, 2007, 50(2): 221-229.
[28] Tang X M, Nie M M, Zhang J Z, et al. Numerical investigation on enhancing mixing by synthetic jets[J]. Journal of Engineering Thermophysics, 2011, 32(2): 299-302 (in Chinese). 谭晓茗, 聂萌萌, 张靖周, 等. 自耦合射流强化掺混的数值研究[J]. 工程热物理学报, 2011, 32(2): 299-302.
[29] Tan X M, Zhang J Z. Flow and heat transfer characteristics under synthetic jets impingement drivenby piezoelectric actuator[J]. Experimental Thermal and Fluid Science, 2013, 48: 134-146.
[30] Yang D G, Wu J F, Luo X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 1007-1014 (in Chinese). 杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报, 2011, 32(2): 1007-1014.
[31] Coronado P, Velez C, Ilie M. Reduction of helicopter BVI noise using synthetic jets; a numerical study using large-eddy simulation, AIAA-2013-0804[R]. Reston: AIAA, 2013.
[32] Nagappan N, Golubev V, Nakhla H, et al.On icing control using thermally activated synthetic jets, AIAA-2013-0093[R]. Reston: AIAA, 2013.
[33] Nagappan N, Golubev V V, Habashi W G. Parametric analysis of icing control using synthetic jet actuators, AIAA-2013-2453[R]. Reston: AIAA, 2013.
[34] Luo Z B, Xia Z X, Liu B. A synthetic jet actuator with a single diaphragm, dual cavities and exits: China. ZP200610031334.0[P]. 2006-08-16 (in Chinese). 罗振兵, 夏智勋, 刘冰. 单膜双腔双口合成射流激励器: 中国. ZP200610031334.0[P]. 2006-08-16.
[35] Luo Z B, Xia Z X, Liu B. New generation of synthetic jet actuator[J]. AIAA Journal, 2006, 44(10): 2418-2420.
[36] Bettridge M W, Spall R E, Smith B L. Aerodynamic jet vectoring using steady blowing and suction, AIAA-2004-0921[R].Reston: AIAA, 2004.
[37] Zhou J, Tang H, Zhong S. Vortex roll-up criterion for synthetic jets[J]. AIAA Journal, 2009, 47(5): 1252-1262.
[38] Tang H, Zhong S. Lumped element modelling of synthetic jet actuators[J]. Aerospace Science and Technology, 2009, 13(6): 331-339.
/
〈 | 〉 |