Electronics and Control

Relative Motion Estimation of Non-cooperative Spacecraft Based on Adaptive CKF

  • YU Han ,
  • WEI Xiqing ,
  • SONG Shenmin ,
  • LIU Ming
Expand
  • 1. Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China;
    2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China

Received date: 2013-10-25

  Revised date: 2014-03-20

  Online published: 2014-04-04

Supported by

National Natural Science Foundation of China (61174037);National Basic Research Program of China (2012CB821205)

Abstract

A relative state estimation method is proposed based on stereo vision for non-cooperative satellite with no communication and information about structure. Since the error of clohessy wiltshire (CW) model can not be neglected when camera does not coincide with the center of mass of spacecraft, a general kinematic coupling which is appropriate for both eccentric orbit and circular orbit is used to describe the relationship between rotation and translation dynamics. Adaptive cubature Kalman filter combing Sage-Husa noise statistic estimator is introduced for nonlinear filtering problem with time-varying noise. Simulation results show that the method can be able to adapt the time-varying noise and its precision for relative motion estimation is higher.

Cite this article

YU Han , WEI Xiqing , SONG Shenmin , LIU Ming . Relative Motion Estimation of Non-cooperative Spacecraft Based on Adaptive CKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(8) : 2251 -2260 . DOI: 10.7527/S1000-6893.2014.0026

References

[1] Stoll E, Letschnik J, Walter U, et al. On-orbit servicing[J]. IEEE Robotics and Automation Magazine, 2009, 16(4): 29-33.

[2] Polites M E. Technology of automated rendezvous and capture in space[J]. Journal of Spacecraft and Rockets, 1999, 36(2): 280-291.

[3] Kim S G, Crassidis J L, Cheng Y, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1): 133-143.

[4] Philip N K, Ananthasayanam M R. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft[J]. Acta Astronautica, 2003, 52(7): 511-522.

[5] Wang J Y, Liang H Z, Sun Z W, et al. A multi-cue-based relative navigation algorithm for spacecraftvia dual-number representation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1881-1892. (in Chinese) 王剑颖, 梁海朝, 孙兆伟, 等. 基于对偶数的航天器多特征融合相对导航算法[J]. 航空学报, 2012, 33(10): 1881-1892.

[6] Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256. (in Chinese) 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256.

[7] Xu W F, Liang B, Li C, et al. Autonomous rendezvous and robotic capturing of non-cooperative target in space[J]. Robotica, 2010, 28(5): 7015-7018.

[8] Zhang S J, Tan X N, Cao X B. Robust method of vision based relative pose parameters for non-cooperative spacecrafts[J]. Journal of Harbin Institute of Technology, 2009, 41(7): 6-10. (in Chinese) 张世杰, 谭校纳, 曹喜滨. 非合作航天器相对位姿的鲁棒视觉确定方法[J]. 哈尔滨工业大学学报, 2009, 41(7): 6-10.

[9] Kelsey J M, Byrne J, Cosgrove M, et al. Vision-based relative pose estimation for autonomous rendezvous and docking//Proceedings of IEEE Aerospace Conference, 2006.

[10] Zhou J, Bai B, Yu X Z. A new method of relative position and attitude determination for non-cooperative target[J]. Journal of Astronautics, 2011, 32(3): 516-521. (in Chinese) 周军, 白博, 于晓洲. 一种非合作目标相对位置和姿态确定方法[J]. 宇航学报, 2011, 32(3): 516-521.

[11] Segal S, Gurfil P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 1045-1050.

[12] Maessen D, Gill E. Relative state estimation and observability analysis for formation flying satellites[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 321-326.

[13] Julier S J, Uhlmann J K, Durrant-Whyte H F. New approach for filtering nonlinear systems//Proceedings of the American Control Conference, 1995: 1628-1632.

[14] Giannitrapani A, Ceccarelli N, Scortecci F, et al. Comparison of EKF and UKF for spacecraft localization via angle measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 75-84.

[15] Gunnarsson F, Bergman N, Forssell U, et al. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437.

[16] Arasaratnam I, Haykin S. Cubature kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.

[17] Sage A P, Husa G W. Adaptive filtering with unknown prior statistics//Proceedings of the Joint Automatic Control Conference, 1969: 760-769.

[18] Shi Y, Han C Z. Adaptive UKF method with applications to target tracking[J]. Acta Automatica Sinica, 2011, 37(6): 755-759. (in Chinese) 石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用[J]. 自动化学报, 2011, 37(6): 755-759.

[19] Herbert B, Tinne T, Luc V G. Speeded-up robust features(SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.

Outlines

/