ACTA AERONAUTICAET ASTRONAUTICA SINICA >
High-temperature Strengthening Manufacturing of Alumina-based Ceramic Molds Used for Hollow Turbine Blades
Received date: 2013-12-24
Revised date: 2014-03-11
Online published: 2014-03-28
Supported by
National Basic Research Program of China (2013CB035703);The Fundamental Research Funds for the Central Universities
To solve the problem that alumina-based ceramic molds usually perform badly at high temperature, different kinds of impregnating materials have been compared. Results show that molds without strengthening perform badly with the strength less than 0.5 MPa (1 500℃) and 10 MPa (20℃), while molds with strengthening perform differently. Molds impregnated with YCl3 or MgCl2 solution are not ideal, and there is a big expansion in the molds impregnated with MgCl2 solution, which do not meet the application requirements. While by impregnating with silica solution or ethyl silicate hydrolyzate, the mechanical property of ceramic molds can be improved significantly. After impregnating with silica solution, the high-temperature strength is improved to 10 MPa (1 500℃), meeting the demand of fabricating blades during unidirectional solidification. Shrinkage of the molds is restrained by compound impregnating, and at last a hollow turbine blade is successfully fabricated by casting.
LIU Tao , LU Zhongliang , MIAO Kai , LI Dichen . High-temperature Strengthening Manufacturing of Alumina-based Ceramic Molds Used for Hollow Turbine Blades[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(7) : 2072 -2080 . DOI: 10.7527/S1000-6893.2014.0029
[1] Li F, Wang F.Research status on ceramic cores and shells for superalloy hollow blades investment casting[J]. Journal of Materials Engineering, 2013, 3(8): 85-91.
[2] Feng W, Wang W H, Wang X Z, et al. Size calculationmethod of ceramic core locatorsfor hollow turbineblade investment casting wax patterns[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 181-186.(in Chinese) 冯炜, 汪文虎, 王孝忠, 等.空心涡轮叶片精铸蜡型陶芯定位元件尺寸计算方法[J]. 航空学报, 2013, 34(1): 181-186.
[3] Cui K, Wang W H, Jiang R S, et al. Reverse adjustment algorithm of ceramic core locators in hollow turbineblade investment casting die[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1924-1929.(in Chinese) 崔康, 汪文虎, 蒋睿嵩, 等. 涡轮叶片精铸模具陶芯定位元件逆向调整算法[J]. 航空学报, 2011, 32(10): 1924-1929.
[4] Zhang L T, Cao L M, Liu G L. Near net shape casting theory and practice[M]. Beijing: National Defence Industry Press, 2007: 207-220. (in Chinese) 张立同, 曹腊梅, 刘国利. 近净形熔模精密铸造理论与实践[M]. 北京: 国防工业出版社, 2007: 207-220.
[5] Ding Y, Chang H P. Analysis of turbine blade cooling effectiveness[J].Acta Aeronautica et Astronautica Sinica,2013, 34(1): 46-51.(in Chinese) 丁阳, 常海萍. 涡轮叶片冷却有效性分析[J]. 航空学报, 2013, 34(1): 46-51.
[6] Wu H H, Li D C, Chen X J, et al. Rapid casting of turbine blades with abnormal film cooling holes using integral ceramic casting molds[J]. International Journal of Advanced Manufacturing Technology, 2010, 50(1-4): 13-19.
[7] Wu H H, Li D C, Tang Y P, et al. Rapid casting of hollow turbine blades using integral ceramic moulds[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223(6): 695-702.
[8] Li D C, Wu H H,Lu B H. Shaping method of hollow turbine blades with intergral shelland core ceramic mold[J]. Aeronautical Manufacturing Technology, 2009(3):36-42. (in Chinese) 李涤尘, 吴海华, 卢秉恒. 型芯型壳一体化空心涡轮叶片制造方法[J]. 航空制造技术, 2009(3): 36-42.
[9] Kim Y M, Hong S H, Kim D Y. Anisotropic abnormal grain growth in TiO2/SiO2-doped alumina[J]. Journal of the American Ceramic Society, 2000, 83(11): 2809-2812.
[10] Cao L M, Yang Y W. Alumina-base ceramic core AC-1 for single crystal blades[J]. Journal of Materials Engineering, 1997(9): 21-23. (in Chinese) 曹腊梅, 杨耀武.单晶叶片用氧化铝基陶瓷型芯AC-1[J]. 材料工程, 1997(9): 21-23.
[11] Wereszczak A A, Breder K, Ferber M K, et al. Dimensional changes and creep of silica core ceramics used in investment casting of superalloys[J]. Journal of Materials Science, 2002, 37(19): 4235-4245.
[12] Yu J B, Ren Z M, Wang B Q, et al.Effect of sintering systems and colloidal silica sols on the mechanical properties of oriented silica-based ceramic core materials[J]. Advanced Materials Research, 2011, 177: 418-420.
[13] Frank G R, Keller R J, Haaland R S, et al. Impregnated alumina-based core and method: USA, US6494250. 2002-12-17.
[14] Xue M,Cao L M. Microstructure and properties of alumina based ceramic cores AC-2 for single crystal blades[J]. Journal of Materials Engineering, 2002(4): 33-37. (in Chinese) 薛明, 曹腊梅. 单晶空心叶片用AC-2陶瓷型芯的组织和性能研究[J]. 材料工程, 2002(4): 33-37.
[15] Zhao X T, Cheng L F, Zhang L T, et al. Effect of reinforcement on high-temperature flexural strength of silica-based ceramic cores[J]. Hot Working Technology, 2012, 41(1): 1-4. (in Chinese) 赵宪涛, 成来飞, 张立同, 等. 强化对硅基陶瓷型芯高温强度的影响[J]. 热加工工艺, 2012, 41(1): 1-4.
[16] Xue M,Cao L M. Effect of mullite on high temperature anti deforming capability of alumina-based ceramic core[J]. Journal of Materials Engineering, 2006(6): 33-34. (in Chinese) 薛明, 曹腊梅. 莫来石对氧化铝基陶瓷型芯的高温抗变形能力的影响[J]. 材料工程, 2006(6): 33-34.
[17] Medraj M, Hammond R, Parvez M A, et al. High temperature neutron diffraction study of the Al2O3-Y2O3 system[J]. Journal of the European Ceramic Society, 2006, 26(16): 3515-3524.
[18] Waku Y, Sakuma T. Dislocation mechanism of deformation and strength of Al2O3-YAG single crystal composites at high temperatures above 1 500℃[J]. Journal of the European Ceramic Society, 2000, 20(10): 1453-1458.
[19] Liu Y Q. Silicate ceramic phase diagram[M]. Beijing: Chemical Industry Press, 2011: 21-22 (in Chinese) 刘玉芹. 硅酸盐陶瓷相图[M]. 北京: 化学工业出版社, 2011: 21-22.
[20] Yokota K, Tsukuda A, Kondo Y. Effect of addition of MgO on platelike grain growth in alumina sintered bodies and their mechanical properties[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1998, 45(11): 1018-1023.
[21] Mohapatra D, Sarkar D. Preparation of MgO-MgAl2O4 composite for refractory application[J]. Journal of Materials Processing Technology, 2007, 189(1): 279-283.
/
〈 | 〉 |