ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Station-keeping of Tethered Satellite System Around a Halo Orbit Using Nonlinear Model Predictive Control
Received date: 2013-12-03
Revised date: 2014-03-10
Online published: 2014-03-25
Supported by
National Natural Science Foundation of China (61304005)
The nonlinear model predictive control (NMPC) method is employed to design the controller for the station-keeping mission around Halo orbits of dumbbell tethered satellites in the circular restricted three-body problem (CRTBP). First, the target Halo orbit is obtained using the perturbation method. The station-keeping control problem is translated into a tracking control problem by tracking a target point moving along the reference orbit. Then, the original system model is discretized by the fourth-order Ronge-Kutta method. The finite horizon optimal control problem is transformed into a nonlinear optimization problem and solved by nonlinear programming, which then provides the control input for the next control period. Finally, the numerical simulation results demonstrate that even in the case of large initial position deviation, the controller can still guarantee that the tethered satellite system move along the target orbit precisely with relatively small velocity increment.
LIU Gang , LI Chuanjiang , MA Guangfu . Station-keeping of Tethered Satellite System Around a Halo Orbit Using Nonlinear Model Predictive Control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(9) : 2605 -2614 . DOI: 10.7527/S1000-6893.2013.0017
[1] Farquhar R W. The control and use of libration-point satellites, NASA TR R-346[R]. Washington, D. C.: NASA, 1970.
[2] Farquhar R W. Tether stabilization at a collinear libration point[J]. Journal of the Astronautical Sciences, 2001, 49(1): 91-106.
[3] Gates S S. Dynamic model for a multi-tethered space-based interferometer, NRL/MR/8230-00-8475[R]. Washing-ton, D. C.: Naval Research Laboratory, 2000.
[4] Kim M, Hall C D. Control of a rotating variable-length tethered system[J].Journal of Guidance, Control, and Dynamics, 2004, 27(5): 849-858.
[5] Kim M, Hall C D. Dynamics and control of tethered satellite systems for NASA's SPECS Mission[C]//AAS/AIAA Astrodynamics Specialists Conference. 2003: 1-20.
[6] Misra A K, Bellerose J, Modi V J. Dynamics of a tethered system near the Earth-Moon Lagrangian points[J]. Advances in the Astroautical Sciences, 2002, 109(1): 415-435.
[7] Wong B, Misra A K. Dynamics of Lagrangian point multitethered satellite systems[J]. Journal of the Astronautical Sciences, 2005, 53(3): 221-250.
[8] Zhao J, Cai Z Q. Nonlinear dynamics and simulation of multi-tethered satellite formations in Halo orbits[J]. Acta Astronautica, 2008, 63(5-6): 673-681.
[9] Zhao J. Dynamics and control of multi-tethered satellite formation near libration points. Dalian: Dalian University of Techonology, 2010. (in Chinese) 赵军. 平动点附近多体绳系卫星编队动力学与控制.大连: 大连理工大学, 2010.
[10] Peláez J, Sanjurjo M, Lucas F R, et al. Dynamics and stability of tethered satellites at Lagrangian points, ESA/ESTEC Report, Ariadna ID 07/4201[R]. Paris: European Space Agency, 2008.
[11] Breakwell J V, Kamel A A, Ratner M J. Station-keeping of a translunar communication station[J]. Celestial Mechanics, 1974, 10(3): 357-373.
[12] Howell K C, Pernicka J. Station-keeping method for libration point trajectories[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(1): 151-159.
[13] Gómez G, Howell K C, Masdemont J, et al. Station-keeping strategies for translunar libration point orbits[J]. Advances in the Astronautical Sciences, 1998, 99(2): 949-969.
[14] Cielaszyk D, Wie B. New approach to halo orbit determination and control[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(2): 266-273.
[15] Rahmani A, Jalali M A, Pourtakdoust S H. Optimal approach to halo orbit control, AIAA-2003-5748[R]. Reston: AIAA, 2003.
[16] Infeld S, Murray W. Optimization of station keeping for a libration point mission[C]//AAS Space Flight Mechanics Meeting. 2004.
[17] Xin M, Balakrishnan S N, Pernicka H J. Multiple spacecraft formation control with θ -D method[J]. IET Control Theory & Applications, 2007, 1(2): 485-493.
[18] Wong H, Kapila V. Spacecraft formation flying near Sun-Earth L2 Lagrange point: trajectory generation and adaptive output feedback control[C]//Proceeding of the 2005 American Control Conference. 2005: 2411-2418.
[19] Chao N, Li Y J. A halo orbit control method based on sectional continuous thrust[J]. Journal of Astronautics, 2011, 32(9): 1925-1931. (in Chinese) 晁宁, 李言俊. 基于分段连续推力的晕轨道控制方法[J]. 宇航学报, 2011, 32(9): 1925-1931.
[20] Peng H J, Tan S J, Wu Z G. Receding horizon control of the spacecraft for transfering between halo orbits[J]. Journal of Astronautics, 2012, 33(8): 1027-1034. (in Chinese) 彭海军, 谭述君, 吴志刚. 航天器Halo轨道间转移的滚动时域控制[J]. 宇航学报, 2012, 33(8): 1027-1034.
[21] Zhong R, Xu S J. Orbit-transfer control for TSS using direct collocation method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 572-578. (in Chinese) 钟睿, 徐世杰. 基于直接配点法的绳系卫星系统变轨控制[J]. 航空学报, 2010, 31(3): 572-578.
[22] Wang X Y, Wen H, Jin D P. Receding horizon control of retrieval of a tethered subsatellite with attitude[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 919-925. (in Chinese) 王晓宇, 文浩, 金栋平. 考虑姿态的绳系卫星后退时域回收控制[J]. 力学学报, 2010, 42(5): 919-925.
[23] GrÜne L, Pannek J. Nonlinear model predictive control: theory and algorithms[M]. London: Springer-Verlag London, 2011: 95-101.
/
〈 | 〉 |