Fluid Mechanics and Flight Mechanics

Uncertainty Analysis of Airfoil Wind Tunnel Tests with Automatic Differentiation

  • XU Lincheng ,
  • WANG Gang ,
  • WU Jie ,
  • YE Zhengyin
Expand
  • National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-10-14

  Revised date: 2013-12-20

  Online published: 2014-03-20

Supported by

National Natural Science Foundation of China (11272264)

Abstract

In order to obtain a deep understanding of the way that the perturbations from free stream influence the test results, based on finite volume algorithm, solving the Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras turbulence model, we develop a set of computational fluid dynamics (CFD) program for 2 dimension problems and then build the corresponding process to compute sensitive derivatives with the method of automatic differentiation. With the transformed program, one computational course yields derivatives of all aerodynamic coefficients with respect to angle of attack, Mach number and Reynolds number. As the computational results show, in subsonic flow and transonic flow, surface pressure coefficients of the airfoil are the most sensitive to Mach number, to which the sensitivities are at least 8 order higher than that to Reynolds number. However, in subsonic flow, uncertainties caused by angle of attack perturbations is one order higher than that caused by Mach number perturbations, which means that wind tunnel accuracy of angle of attack would determine the accuracy of experimental results to a great extent, while transonic flow reverses the above results and conclusion. Furthermore, increased sensitivities to Mach number lead to the fact that uncertainties of pressure coefficients of the airfoil in transonic flow are one order higher than that in subsonic flow, which means, in transonic flow, wind tunnel accuracy of Mach number should be raised to guarantee the accuracy of the experimental results.

Cite this article

XU Lincheng , WANG Gang , WU Jie , YE Zhengyin . Uncertainty Analysis of Airfoil Wind Tunnel Tests with Automatic Differentiation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(8) : 2102 -2111 . DOI: 10.7527/S1000-6893.2013.0503

References

[1] Cheng K M, Zhang Q W, Huang Y Y, et al. Correction for Reynolds number in transonic wind-tunnel testing[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(11): 1383-1385. (in Chinese) 程克明, 张其威, 黄奕裔, 等. 跨音速风洞试验的Re数修正[J]. 航空学报, 1994, 15(11): 1383-1385.

[2] Huang Y, Dong L X, Zhao K C. On the correlation of force test results of a tactical missile calibration model in five different wind tunnels[J]. Experiments and Measurements in Fluid Mechanics, 2003, 16 (2): 16-20. (in Chinese) 黄勇, 董立新, 赵克诚. 战术导弹标模五座风洞实验数据的相关性研究[J]. 流体力学实验与测量, 2003, 16(2): 16-20.

[3] Wang J J, Wu K. Experimental investigation of the effect of wing elastic deformations on aerodynamics[J]. Acta Aerodynamica Sinica, 2007, 25(1): 55-59. (in Chinese) 王晋军, 伍康. 机翼弹性变形对气动特性影响的实验研究[J]. 空气动力学学报, 2007, 25(1): 55-59.

[4] Yun Q L. The error analysis for wind tunnel testing data[J]. Aerodynamic Experiment and Measurement & Control, 1994, 8(2): 62-70. (in Chinese) 恽起麟. 风洞实验数据误差分析[J]. 气动实验与测量控制, 1994, 8(2): 62-70.

[5] Smith C L, Yoes D T. Automated analysis of wind tunnel data repeatability, AIAA-2007-1632. Reston: AIAA, 2007.

[6] Belter D L. Comparison of wind tunnel data repeatability with uncertainty analysis estimates, AIAA-1998-2714. Reston: AIAA, 1998.

[7] Hemsch M, Grubb J, Krieger W, et al. Langley wind tunnel data quality assurance-check standard results, AIAA-2000-2201. Reston: AIAA, 2000.

[8] Kammeyer M E, Rueger M L. On the classification of errors: systematic, random, and replication level, AIAA-2000-2203. Reston: AIAA, 2000.

[9] Ulbrich N M. Test data uncertainty analysis algorithm of NASA ames wind tunnels[J]. AIAA Journal, 2003, 41(8): 1616-1619.

[10] Kammeyer M E, Wozniak R W. An uncertainty analysis for low-speed wind tunnel pressure measurements, AIAA-2004-2196. Reston: AIAA, 2004.

[11] Mader C A, Martins J R R A. Computation of aircraft stability derivatives using an automatic differentiation adjoint approach[J]. AIAA Journal, 2011, 49(12): 2737-2750.

[12] Jones D, Mueller J D, Bayyuk S. CFD development with automatic differentiation, AIAA-2012-0573. Reston: AIAA, 2012.

[13] Lyu Z J, Kenway G K W, Paige C, et al. Automatic differentiation adjoint of the reynolds-averaged navier-stokes equations with a turbulence model, AIAA-2013-2581. Reston: AIAA, 2013.

[14] Dalle D J, Driscoll J F. Continuous differentiation of complex systems applied to a hypersonic vehicle//AIAA Atmospheric Flight Mechanics Conference, 2012.

[15] Jiang Z S, Wu Y Z, Jiang H. Comparison studies on numerical methods for sensitivity analysis[J]. Computer & Digital Engineering, 2009, 37(5): 1-5. (in Chinese) 蒋占四, 吴义忠, 蒋慧. 敏度分析的数值方法比较研究[J]. 计算机与数字工程, 2009, 37(5): 1-5.

[16] Li X. Process system optimization based on automatic differentiation. Hangzhou: Zhejiang University, 2003. (in Chinese) 李翔. 基于自动微分算法的过程系统优化. 杭州: 浙江大学, 2003.

[17] Pan L, Gu L X, Gong C L. Fast automatic differentiation and its application to flight vehicle parameter optimization[J].Journal of Northwestern Polytechnical University, 2007, 25(3): 398-401. (in Chinese) 潘雷, 谷良贤, 龚春林. 改进自动微分方法及其在飞行器气动外形优化中的应用[J]. 西北工业大学学报, 2007, 25(3): 398-401.

[18] Gao Y S, Wu Y Z, Xia J. A discrete adjoint-based approach for airfoil optimization on unstructed meshes[J]. Acta Aerodynamica Sinica, 2013, 31(2): 244-249. (in Chinese) 高宜胜, 伍贻兆, 夏健. 基于非结构网格离散型伴随方法的翼型优化[J]. 空气动力学学报, 2013, 31(2): 244-249.

[19] Li J Q, Zhang P, Wang Y Q. Method of uncertainty analysis for wind tunnel test data[J]. Acta Aerodynamica Sinica, 2000, 18(3): 300-306. (in Chinese) 李建强, 张平, 王义庆. 风洞数据不确定度分析方法[J]. 空气动力学学报, 2000, 18(3): 300-306.

[20] Wang G D, Chen Z L, Liu Z Q. Study on uncertainty evaluation methods of aerodynamic parameter estimation for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2057-2063. (in Chinese) 王贵东, 陈则霖, 刘子强. 飞行器气动参数估计不确定度评价方法研究[J]. 航空学报, 2013, 34(9): 2057-2063.

[21] Hascot L, Pascual V. TAPENADE 2.1 user's guide, RT-0300. Sophia Antipolis: INRIA, 2004.

[22] Griewank A. On automatic differentiation[J]. Mathematical Programming: Recent Developments and Applications, 1989, 6(6): 83-107.

[23] Wang G, Ye Z Y. Generation of three dimensional mixed and unstructured grids and its application in solving Navier-Stokes equations[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 385-390.(in Chinese) 王刚, 叶正寅. 三维非结构混合网格生成与N-S方程求解[J]. 航空学报, 2003, 24(5): 385-390.

[24] Moore R E. Methods and applications of interval analysis[M]. Philadelphia: Siam, 1979: 14.

[25] Barche J. Experimental data base for computer program assessment, AGARD Advisory Report No. 138[M]//Fluid Dynamics Panel Working Group 04. London: Tecknicnl Editing and Reproduerion Lrd Horfijrd House, 1979: 32.

Outlines

/