Solid Mechanics and Vehicle Conceptual Design

Residual Life Prediction Method Fusing Accelerated Degradation and Field Degradation Data

  • WANG Haowei ,
  • XU Tingxue ,
  • ZHAO Jianzhong
Expand
  • 1. Graduate Students' Brigade, Naval Aeronautical and Astronautical University, Yantai 264000, China;
    2. Department of Ordnance Science and Technology, Naval Aeronautical and Astronautical University, Yantai 264000, China

Received date: 2013-12-09

  Revised date: 2014-03-03

  Online published: 2014-03-10

Supported by

National Natural Science Foundation of China (61273058)

Abstract

To address the situation that prior information is accelerated degradation data, a residual life prediction method based on Bayesian inference with non-conjugate prior distribution is proposed. Without presupposing the parameters' distribution types of a Wiener process, the parameters at accelerated stress levels are transformed into normal use stress level through acceleration factors and then the optimally fitted distribution types are determined using Anderson-Darling method. When transforming the parameter values, the relationships between parameters of the Wiener process and accelerated stress are deduced according to the theory proposed by Zhou Yuanquan. The estimates of hyper-parameters can be obtained by maximum likelihood methods, and posterior means of parameters can be inferred by Markov Chain Monte Carlo using WinBUGS software. The practical value and research significance of this study are demonstrated through a certain missile electrical connector lifetime prediction example. The results show that the proposed method can effectively solve the problem of residual life prediction when prior information is accelerated degradation data.

Cite this article

WANG Haowei , XU Tingxue , ZHAO Jianzhong . Residual Life Prediction Method Fusing Accelerated Degradation and Field Degradation Data[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3350 -3357 . DOI: 10.7527/S1000-6893.2014.0010

References

[1] Guida M, Penta F. A Bayesian analysis of fatigue data[J]. Structural Satety, 2010, 32(1): 64-76.

[2] Jiang X M, Yuan Y, Liu X. Bayesian inference method for stochastic damage accumulation modeling[J]. Reliability Engineering and System Safety, 2013, 111(2): 126-138.

[3] Karandikar J M, Kim N H, Schmitz T L. Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference[J]. Engineering Fracture Mechanics, 2012, 96(4): 588-605.

[4] Berger J O. Statistical decision theory and Bayesian analysis[M]. New York: Springer-Verlag, 1985: 111-198.

[5] Wang X. Wiener processes with random effects for degradation data[J]. Journal of Multivariate Analysis, 2010, 101(2): 340-351.

[6] Peng B H, Zhou J L, Pan Z Q. Bayesian method for reliability assessment of products with Wiener process degradation[J]. System Engineering-Theory & Practice, 2010, 30(3): 543-549. (in Chinese) 彭宝华, 周经伦, 潘正强. Wiener过程性能退化产品可靠性评估的Bayes方法[J]. 系统工程理论与实践, 2010, 30(3): 543-549.

[7] Wang X L, Cheng Z J, Guo B. Residual life forecasting of metalized film capacitor based on wiener process[J]. Journal of National University of Defense Technology, 2011, 33(4): 146-151. (in Chinese) 王小林, 程志君, 郭波. 基于维纳过程金属化膜电容器的剩余寿命预测[J]. 国防科技大学学报, 2011, 33(4): 146-151.

[8] Jin G, Matthews D E, Zhou Z. A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft[J]. Reliability Engineering and System Safety, 2013, 113(4): 7-20.

[9] Ahmad K E, Jaheeen Z F. Approximate bayesian estimators[J]. Computers and Mathematics with Applications, 1994, 29(12): 39-47.

[10] Whitmore G A. Normal-gamma mixtures of inverse Gaussian distribution[J]. Scandinavian Journal of Statistics, 1986, 13(1): 211-220.

[11] Onar A, Padgett W J. Accelerated test models with the inverse Gaussian distribution[J]. Journal of Statistical Planning and Inference, 2000, 89(1): 119-133.

[12] Seshadri V. The inverse Gaussian distribution[M]. New York: Oxford University Press, 1993: 67-99.

[13] Ntzoufras I. Bayesian modeling using WinBUGS[M]. New York: John Wiley & Sons, 2009: 12-55.

[14] Zhou Y Q, Weng Z X, Ye X T. Study on accelerated factor and condition for constant failure mechanism[J]. Systems Engineering and Electronics, 1996, 18(1): 55-67. (in Chinese) 周源泉, 翁朝曦, 叶喜涛. 论加速系数与失效机理不变的条件(Ⅰ)—寿命型随机变量的情况[J]. 系统工程与电子技术, 1996, 18(1): 55-67.

[15] Zhang C H, Chen X, Yang Y M. Research on environmental factors under common life distributions[J]. Structure & Environment Engineering, 2001, 4(7): 8-11. (in Chinese) 张春华, 陈循, 杨拥民. 常见寿命分布下环境因子的研究[J]. 强度与环境, 2001, 4(7): 8-11.

[16] Yang Y H, Zhou Y Q. Theoretical foundation of accelerated life(Ⅰ)[J]. Journal of Propulsion Technology, 2001, 22(4): 276-278. (in Chinese) 杨宇航, 周源泉. 加速寿命试验的理论基础(Ⅰ)[J]. 推进技术, 2001, 22(4): 276-278.

[17] Grace A W, Wood I A. Approximating the tail of the Anderson-Darling distribution[J]. Computational Statistics and Data Analysis, 2012, 56(12): 4301-4311.

[18] Lin R J, Chen W H, Liu J, et al. Research on feasibility of accelerated degradation test for aerospace electrical connector[J]. Journal of Engineering Design, 2010, 17(4): 317-320. (in Chinese) 林瑞进, 陈文华, 刘娟, 等. 航天电连接器加速性能退化试验可行性研究[J]. 工程设计学报, 2010, 17(4): 317-320.

[19] Zhang G L, Cai J Y, Liang Y Y, et al. Research on reliability assessment method of electronic equipment based on multi-stress ADT[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2815-2822. (in Chinese) 张国龙, 蔡金燕, 梁玉英, 等. 电子装备多应力加速退化试验技术及可靠性评估方法研究[J]. 航空学报, 2013, 34(12): 2815-2822.

Outlines

/