Fluid Mechanics and Flight Mechanics

Redesign of Counter-rotating Compressor with Boundary Layer Suction

  • SHI Lei ,
  • LIU Bo ,
  • WANG Lei ,
  • WU Xiaoxiong ,
  • CAO Zhiyuan
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC Aerodynamic Research Institute, Shenyang 110000, China

Received date: 2013-12-12

  Revised date: 2014-02-23

  Online published: 2014-03-05

Supported by

National Natural Science Foundation of China (51236006)

Abstract

Boundary layer suction and blade optimization are employed in the redesign of a dual-stage counter-rotating compressor with numerical simulation. Further experimental research will be carried out according to the numerical results. At near stall point, there is serious flow separation at the tip region of the original outlet guide vane (OGV). Airfoil optimization makes smooth acceleration at the leading edge, and decreases the recirculation zone in the blade passage. Up to 70% spanwise of OGV, total pressure loss coefficient has a 38.4% drop in average. Isentropic efficiency of the compressor is improved by 0.3%. An axisymmetric suction slot located at 66% chordwise of Rotor 2 (R2) tip region with 1 mm width is designed at the shroud case. 1% comparative mass flow at near stall point can optimize the loading level of R2 tip region, bringing a 10% improvement in average on R2 isentropic efficiency in higher spanwise from 65%. These result in a positive effect on the flow condition of the OGV: corner separation is limited to a smaller region, total pressure loss coefficient has a 25% drop in average in the region up to 85% spanwise, and the isentropic efficiency of the compressor is further improved by 0.5%.

Cite this article

SHI Lei , LIU Bo , WANG Lei , WU Xiaoxiong , CAO Zhiyuan . Redesign of Counter-rotating Compressor with Boundary Layer Suction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3254 -3263 . DOI: 10.7527/S1000-6893.2013.05340

References

[1] Liu D X. Historic opportunities of aeropropulsion development[J]. Aeroengine, 2005, 31(2): 1-3.(in Chinese) 刘大响. 航空动力发展的历史性机遇[J]. 航空发动机, 2005, 31(2): 1-3.

[2] Car D, Puterbaugh S L, Bailie S T. Turbomachinery fluid mechanics and control, AFRL-RZ-WP-TR-2010-2026[R]. 2010.

[3] Zhou M, Li H H, Tang K P. Advances in flow control technology of boundary layer separation on the blade[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 298-304. (in Chinese) 周敏, 李航航, 唐侃平. 叶型附面层分离流动控制技术研究进展[J]. 航空工程进展, 2011, 2(3): 298-304.

[4] Reijnen D P. Experimental study of boundary layer suction in a transonic compressor[D]. Cambridge, MA: Massachusetts Institute of Technology, 1997.

[5] Kerrebrock J L, Drela M A, Merchant A A, et al. A family of designs for aspirated compressors, ASME Paper, 98-GT-196[R]. Washington, D.C.: ASME, 1998.

[6] Schuler B J, Kerrebrock J L, Merchant A A, et al. Design, analysis, fabrication and test of an aspirated fan stage, ASME Paper, 2000-GT-618[R]. Washington, D.C.: ASME, 2000.

[7] Merchant A A. Aerodynamic design and performance of aspirated airfoils, ASME Paper, 2002-GT-30369[R]. Washington, D. C.: ASME, 2002.

[8] Kerrebrock J L, Adamczyk J J, Shabbir A, et al. Design and test of an aspirated counter-rotating fan[J]. Journal of Turbomachinery, 2008, 130(2): 021004-1-021004-8.

[9] Gbadebo S A, Cumpsty N A, Hynes T P. Control of three-dimensional separations in axial compressor by tailored boundary layer suction[J]. Journal of Turbomachinery, 2008, 130(1): 011004-1-011004-8.

[10] Godard A, Fourmaux A, Burguburu S, et al. Design method of a subsonic aspirated cascade, ASME Paper, 2008-GT-50835[R]. Washington, D.C.: ASME, 2008.

[11] Godard A, Bario F, Burguburu S, et al. Experimental and numerical study of a subsonic aspirated cascade, ASME Paper, 2012-GT-69011[R]. Washington, D.C.: ASME, 2012.

[12] Liesner K, Meyer R, Gmelin C, et al. On the performance of boundary layer suction for secondary flow control in a high speed compressor[C]//43rd Fluid Dynamic Conference, 2013.

[13] Wang S T, Qiang X Q. Study of low-reaction boundary layer suction axial compressor and it's internal flow control[J]. Journal of Engineering Thermophysics, 2009, 30(1): 35-40. (in Chinese) 王松涛, 羌晓青. 低反动度附面层抽吸式压气机及其内部流动控制[J]. 工程热物理学报, 2009, 30(1): 35-40.

[14] Qiang X Q. Study of flow control and design methods in low-reaction boundary layer suction compressors[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese) 羌晓青. 低反动度附面层抽吸式压气机流动控制及设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

[15] Nan X Y. The numerical and experimental study of the aspirated compressor blade[D]. Xi'an: Northwestern Polytechnical University, 2008. (in Chinese) 南向谊. 吸附式压气机叶片的流动机理探索及试验研究[D]. 西安: 西北工业大学, 2008.

[16] Huang J, Liu B, Cao Z Y, et al. Comparing different methods for simulating aspiration of counter-rotational compressor[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(8): 1301-1305. (in Chinese) 黄建, 刘波, 曹志远, 等. 吸附式对转压气机不同数值模拟方法的对比研究[J]. 机械科学与技术, 2012, 31(8): 1301-1305.

[17] Liu B, Cao Z Y, Wei W, et al. Effects of boundary layer suction on counter-rotating compressor in multistage environment[J]. Journal of Aerospace Power, 2013, 28(4): 885-892. (in Chinese) 刘波, 曹志远, 魏巍, 等. 级环境下附面层抽吸对对转压气机性能的影响[J]. 航空动力学报, 2013, 28(4): 885-892.

[18] Liu B, Cao Z Y, Shi L, et al. The application of non-axisymmetric endwall contouring and blade profile optimization in a counter-rotating compressor[C]//21st ISABE Conference, 2013.

[19] Gummer V, Goller M, Swoboda M. Numerical investigation of end wall boundary layer removal on highly loaded axial compressor blade rows[J]. Journal of Turbomachiner, 2008, 130(1): 011015-1-011015-9.

[20] Zhang H G, Chu W L, Wu Y H, et al. Investigation of the flow mechanisms of affecting compressor performance with axial skewed slots casing treatment[J]. Journal of Propulsion Technology, 2010, 31(5): 555-561. (in Chinese) 张皓光, 楚武利, 吴艳辉, 等. 轴向倾斜缝机匣处理影响压气机性能的机理[J]. 推进技术, 2010, 31(5): 555-561.

Outlines

/