ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A RANS/LES Hybrid Model Based on Local Flow Structure
Received date: 2013-11-11
Revised date: 2014-01-16
Online published: 2014-02-21
Supported by
National Natural Science Foundation of China (11002014)
In order to overcome the inherent deficiency of the traditional Reynolds Averaged Navier-Stokes/large eddy simulation (RANS/LES) hybrid model, i.e., 'the bridging problem of RANS and LES', a discriminating function extracted from Vreman's subgrid-scale (SGS) model, which is used to describe flow regimes, is employed to formulate a new RANS/LES hybrid model. The model coefficients are calibrated by incompressible turbulent channel flows. The test cases include incompressible turbulent channel flows, stable-state supersonic boundary layers over a flat plate, flow past NACA4412 airfoil and flow past a circular cylinder at subcritical Reynolds numbers. This new model is not only able to solve the modeled-stress-depletion problem, but also greatly raises the accuracy when compared with the traditional RANS/LES hybrid approach, such as detached eddy simulation (DES) in predicting large-scale unsteadiness. Furthermore, the model can also solve the log-layer mismatch (LLM) problem when RANS/LES hybrid is employed as wall modeled LES, thus extending the ability of Vreman's LES model in dealing with coarse meshes. The accuracy is greatly improved.
XU Jinglei , GAO Ge , YANG Yan . A RANS/LES Hybrid Model Based on Local Flow Structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(11) : 2992 -2999 . DOI: 10.7527/S1000-6893.2013.0522
[1] Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[M]//Liu C, Liu Z. Advances in DNS/LES. Columbus, Ohio: Greyden Press, 1997.
[2] Hamba F. A hybrid RANS/LES simulation of turbulent channel flow[J]. Theoretical and Computational Fluid Dynamics, 2003, 16(5): 387-403.
[3] Ding J C, Wu Z C, Ju S J. Study of delayed eddy simulation methods[C]//Proceeding of 18th Annual Meeting of Beijing Society of Theoretical and Applied Mechanics, 2012: 47-48. (in Chinese) 丁举春, 吴宗成, 鞠胜军. 分离涡模拟方法的研究[C]//北京力学会第18届学术年会论文集, 2012: 47-48.
[4] Sun M B, Wang H B, Liang J H, et al. Evaluation of hybrid RANS/LES methodologies for complex turbulent flow simulations[J]. Aeronautical Computing Technique, 2011, 41(1): 24-33. (in Chinese) 孙明波, 汪洪波, 梁剑寒, 等. 复杂湍流流动的混合RANS/LES方法研究[J]. 航空计算技术, 2011, 41(1): 24-33.
[5] Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195.
[6] Song K, Qiao Z D. Delayed RANS/LES method for high attack angle flow over multi-element airfoil[J]. Aeronautical Computing Technique, 2009, 39(3): 42-55. (in Chinese) 宋科, 乔志德. 多段翼型大迎角分离流动的Delayed RANS/LES 混合算法[J]. 航空计算技术, 2009, 39(3): 42-55.
[7] Wang H B, Sun M B, Wu H Y, et al. Improved DES-like method for simulation of turbulent flows[J]. Journal of Aerospace Power, 2011, 26(10): 2167-2173. (in Chinese) 汪洪波, 孙明波, 吴海燕, 等. 一种改进的类DES湍流模拟方法[J]. 航空动力学报, 2011, 26(10): 2167-2173.
[8] Xiao Z X, Fu S. Studies of the unsteady supersonic base flows around three after bodies[J]. Acta Mechanica Sinica, 2009, 25(4): 471-479.
[9] Shi Y P, Xiao Z L, Chen S Y. Constrained subgrid-scale stress model for large eddy simulation[J]. Physics of Fluids, 2008, 20(1): 011701.
[10] Vreman A W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications[J]. Physics of Fluids, 2004, 16(10): 3670-3681.
[11] Moser R D, Kin J, Mansour N N. Direct numerical simulation of turbulent channel flow up to Re=590[J]. Physics of Fluids, 1999, 11(4): 943-945.
[12] Hoyas S, Jiménez J. Reynolds number effects on the Reynolds-stress budgets in turbulent channels[J]. Physics of Fluids, 2008, 20(10): 101511.
[13] Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
[14] Gao H, Fu D X, Ma Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7): 1709-1712.
[15] Menter F R, Kuntz M. Adaption of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]//McCallen R, Browand F, Ross J. The aerodynamics of heavy vehicles: trucks, busses and trains. Berlin: Springer Heidelberg, 2004: 339-352.
[16] Ma X, Karamanos G S, Karniadakis G E. Dynamics and low-dimensionality of a turbulence near wake[J]. Journal of Fluid Mechanics, 2000, 410: 29-65.
[17] Lourenco L M, Shih C. Characteristics of the plane turbulent near wake of a circular cylinder-A particle image velocimetry study. Private Communication[R]. 1993.
/
〈 | 〉 |