Electronics and Control

A Real Time Estimation Method of Time-delay for X-ray Pulsar Signal

  • LI Pengfei ,
  • XU Guodong ,
  • DONG Limin ,
  • HOU Tianrui
Expand
  • Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China

Received date: 2013-09-16

  Revised date: 2014-01-20

  Online published: 2014-02-13

Supported by

National High-tech Research and Development Program of China (2008AA8051602)

Abstract

In order to make up for the defect of traditional treatment in the frequency domain, that can not provide enough new information to the autonomous spacecraft navigation system because of long time accumulation, a new kind of particle filter based on the normal particle filter is proposed for estimating the phase of a pulsar signal. Firstly, a mathematical model of the pulsar signal is obtained by artificial neural network, and the model is taken as the system state equation. Secondly, the new particle filter which is proposed in order to solve the sample impoverishment phenomenon is strictly proven. Finally, because of the special features of the system, the function which indicates the output value precision is derived, and it can provide a reference for spacecraft navigation strategy. Several simulation results all show that the filter can guarantee stability and high precision under the conditions which are set for the three cases that the spacecraft may encounter in real situations.

Cite this article

LI Pengfei , XU Guodong , DONG Limin , HOU Tianrui . A Real Time Estimation Method of Time-delay for X-ray Pulsar Signal[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(7) : 1966 -1976 . DOI: 10.7527/S1000-6893.2013.0526

References

[1] Downs G S. Interplanetary navigation using pulsating radio sources, NASA Technique Reports N74-34150[J]. Washington, D.C.: NASA, 1974.

[2] Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation. College Park: Department of Aerospace Engineering, University of Maryland, 2005.

[3] Hanson J E. Principle of X-ray navigation, SLAC-Report-809. Stanford: Stanford Linear Accelerator Center, Stanford University, 1996.

[4] Su Z, Xu L P, Wang G Y, et al. Pulsar weak signal periodicity detection based on discrete square ware transform[J]. Journal of Astronautics, 2009, 30(6): 2243-2248. (in Chinese) 苏哲, 许录平, 王光耀, 等. 基于离散方波变换的脉冲星微弱信号周期性检测[J]. 宇航学报, 2009, 30(6): 2243-2248.

[5] Jaske C E. Analysis of fatigue, fatigue-crack propagation and fracture data, NASA CR-132332. Washington, D.C.: NASA, 1973.

[6] Maron O, Kijak J, Kramer M, et al. Pulsar spectra of radio emission[J]. Astronomy and Astrophysics, 2000, 147: 195-203.

[7] Morii M, Ktamoto S, Shibazaki N, et al. Suzaku observation of the anomalous X-ray pulsar 1E 1841-045[J]. Publications of the Astronomical Society of Japan, 2010, 62(5): 1249-1259.

[8] Xie Q, Xu L P, Zhang H, et al. Modeling of X-ray pulsar cumulation profile and signal identification[J]. Acta Physica Sinica, 2012, 61(11): 119701. (in Chinese) 谢强, 许录平, 张华, 等. X射线脉冲星累积轮廓建模及信号辨识[J]. 物理学报, 2012, 61(11): 119701.

[9] Wang L, Xu L P, Zhang H, et al. Pulsar signal detection based on S-transform[J]. Acta Physica Sinica, 2013, 62(13): 139702. (in Chinese) 王璐, 许录平, 张华, 等. 基于S变换的脉冲星辐射脉冲信号检测[J].物理学报, 2013, 62(13): 139702.

[10] Samarasinghe S. Neural networks for applied sciences and engineering[M]. New York: Auerbach Publications, 2006: 99-102.

[11] Zhao F, Chai S L, Ye L F. Improved multi-objective particle swarm optimization algorithm for synthesizing conformal arrays with excitations restricted[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1944-1952. (in Chinese) 赵菲, 柴舜连, 叶良丰. 改进的多目标粒子群算法综合激励受限的共形阵[J]. 航空学报, 2013, 34(8): 1944-1952.

[12] Simon D. Optimal state estimation: Kalman, H, and nonlinear approaches[M]. Hoboken: John Wiley & Sons, Inc., 2006: 199-203.

[13] Sheikh S I, Pines D J, Ray P S, et al. The use of X-ray pulsars for spacecraft navigation[J]. Advances in the Astronautical Sciences, 2004, 119(1): 105-119.

[14] Sheikh S I, Pines D J. Recursive estimation of spacecraft position and velocity using X-ray pulsar time of arrival measurements[J]. Navigation: Journal of the Institute of Navigation, 2006, 53(3): 149-166.

[15] Sheikh S I, Pines D J, Ray P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63.

[16] Guo Z W, Miao L J, Zhao H S, et al. Application of am improved Gaussian-like sum particle filer to large misalignment transfer alignment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 164-172. (in Chinese) 郭子伟, 缪玲娟, 赵洪松, 等. 一种改进的类高斯和粒子滤波在大失准角传递对准中的应用[J]. 航空学报, 2013, 34(1): 164-172.

[17] Xia N, Qiu T S, Li J C, et al. A nonlinear filtering algorithm combining the Kalman filter and the particle filter[J]. Acta Electronica Sinica, 2013, 41(1): 148-152. (in Chinese) 夏楠, 邱天爽, 李景春, 等. 一种卡尔曼滤波与粒子滤波相组合的非线性滤波算法[J]. 电子学报, 2013, 41(1): 148-152.

[18] Munoz S, Lightseyy E G. A sensor driven trade study for autonomous navigation capabilities, AIAA-2011-6589. Reston: AIAA, 2011.

[19] Abidin H Z. On the construction of the ambiguity search space for on-the-fly[J]. Journal of the Institute of Navigation, 1993, 40(3): 321-338.

Outlines

/