ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Delay-decomposition Approach to Memory State Feedback Controller for Stabilization of Combustion Process in Rocket Motors
Received date: 2013-05-23
Revised date: 2013-12-17
Online published: 2014-01-21
Supported by
National Natural Science Foundation of China (61374120)
The dynamical model of combustion in liquid propellant rocket motors is an unstable time-delay system. In order to improve the combustion stability of the closed-loop system, this paper investigates the memory state feedback control for the combustion process in a liquid propellant rocket motor chamber. Firstly, based on the delay-decomposition approach, a new appropriate Lyapunov-Krasovskii (L-K) functionality is introduced, and it is combined with the integral inequality method to deal with the cross-terms; thus a less conservative stability criterion is developed, based on which, a memory state feedback controller is designed. The parameterized expression of the controller is obtained by providing the feasible solution of linear matrix inequality (LMI). Simulation results show that the proposed criterion has enlarged the upper bound of the time-delay and it is less conservative. Moreover, the designed controller has better performance than those reported in existing literature.
HUI Junjun , ZHANG Hexin , ZHOU Xin , KONG Xiangyu , LI Guoliang . Delay-decomposition Approach to Memory State Feedback Controller for Stabilization of Combustion Process in Rocket Motors[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(4) : 948 -956 . DOI: 10.7527/S1000-6893.2013.0491
[1] Gu K Q, Chen J, Kharitonov V L. Stability of time-delay systems[M]. Basel: Birkhuser, 2003: 1-17.
[2] Richard J P. Time-delay systems: an overview of some recent advances and open problems[J]. Automatica, 2003, 39(10): 1667-1694.
[3] Wu M, He Y, She J H. Stability analysis and robust control of time-delay systems[M]. Beijing: Science Press, 2010.
[4] Crocco L. Aspects of combustion stability in liquid propellant rocket motors Part I: Fundamentals-low frequency instability with monopropellants[J]. Journal of the American Rocket Society, 1951, 21(2): 163-178.
[5] Qian X S, Song J. Engineering cybernetics[M]. Beijing: Science Press, 1980: 343-365. (in Chinese) 钱学森, 宋健. 工程控制论(上)[M]. 北京: 科学出版社, 1980: 343-365.
[6] Nie W S, Feng S J. Dynamics models and numerical computation for the combustion in liquid rocket engine[M]. Beijing: National Defense Industry Press, 2011: 25-31.(in Chinese) 聂万胜, 丰松江. 液体火箭发动机燃烧动力学模型与数值计算[M]. 北京: 国防工业出版社, 2011: 25-31.
[7] Fiagbedzi Y A, Pearson A E. Feedback stabilization of linear autonomous time lag systems[J]. IEEE Transactions on Automatic control, 1986, 31(9): 847-855.
[8] Zheng F, Cheng M, Gao W B.Variable structure control of time delay systems with a simulation study on stabilizing combustion in liquid propellant rocket motors[J].Automatica, 1995, 31(7): 1031-1037.
[9] Zheng F, Cheng M, Gao W B. Variable structure control of time-lag system and its application to the stabilization of combustion in rocket motors[J]. Acta Automatica Sinica, 1996, 22(3): 257-262. (in Chinese) 郑锋, 程勉, 高为炳.时滞系统的变结构控制及其在火箭发动机燃烧过程镇定中的应用[J].自动化学报, 1996, 22(3): 257-262.
[10] Moon Y S, Park P, Kwon W H, et al. Delay-dependent robust stabilization of uncertain state delayed systems[J].International Journal of Control, 2001, 74(14):1447-1455.
[11] Fridman E, Tsodik G. H∞ control of distributed and discrete delay systems via discretized Lyapunov functional[J]. European Journal of Control, 2009, 15(1): 84-94.
[12] Xie L, Fridman E, Shaked U. Robust H∞ control of distributed delay systems with application to combustion control[J]. IEEE Transactions on Automatic Control, 2001, 46(12): 1930-1935.
[13] Zheng F, Frank P M. Robust control of uncertain distributed delay systems with application to the stabilization of combustion in rocket motor chambers[J]. Automatica, 2002, 38(3): 487-497.
[14] Chen W H, Zheng W X. Delay-dependent robust stabilization for uncertain neutral systems with distributed delays[J]. Automatica, 2007, 43(1): 95-104.
[15] Jafarov E M.Robust stabilization of input-delayed systems with design example for rocket motor control[J].Aircraft Engineering and Aerospace Technology, 2008, 80(1): 59-65.
[16] Li T, Zhang H X, Meng F. Integral inequality approach to memoryless robust stabilization of combustion process in rocket motor[J]. Journal of Astronautics, 2010, 31(12): 2788-2793. (in Chinese) 李涛, 张合新, 孟飞.火箭发动机燃烧过程无记忆鲁棒镇定的积分不等式方法[J]. 宇航学报, 2010, 31(12): 2788-2793.
[17] Han Q L. A discrete delay decomposition approach to stability of linear retarded and neutral systems[J]. Automatica, 2009, 45(2): 517-524.
[18] Fridman E, Shaked U, Liu K. New conditions for delay-derivative-dependent stability[J]. Automatica, 2009, 45(11): 2723-2727.
[19] Wang C, Shen Y. Delay partitioning approach to robust stability analysis for uncertain stochastic systems with interval time-varying delay[J]. IET Control Theory & Applications, 2012, 6(7): 875-883.
[20] Balasubramaniam P, Krishnasamy R, Rakkiyappan R. Delay-dependent stability of neutral systems with time-varying delay using delay-decomposition approach[J]. Applied Mathematical Modelling, 2012, 36(5): 2253-2261.
[21] Peng C, Fei M R. A refined delay-partitioning approach to the stability of linear systems with interval time-varying delays//2013 IEEE International Symposium on Industrial Electronics (ISIE), 2013: 1-5.
[22] Zhang X M, Han Q L. New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 533-539.
[23] Shen Y, Liu H. Robust control system design for missiles based on theory of time-delay and uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 473-479. (in Chinese) 沈毅, 刘皓.基于时滞不确定理论的导弹鲁棒控制系统设计[J]. 航空学报, 2011, 32(3): 473-479.
[24] Wu M, He Y, She J H. Delay-dependent criteria for robust stability of time-varying delay systems[J]. Automatica, 2004, 40(4): 1435-1439.
/
〈 | 〉 |