Electronics and Control

Defense Penetration Path Planning for UCAV Based on Threat Netting

  • FU Xiaowei ,
  • LI Jinliang ,
  • GAO Xiaoguang
Expand
  • School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2013-06-21

  Revised date: 2013-12-16

  Online published: 2014-01-16

Supported by

Science and Technology on Avionics Integration Laboratory and Aviation Science Foundation (20125553030)

Abstract

This paper studies the path planning of unmanned combat air vehicles (UCAVs) based on threat netting, mainly from the aspects of communication, command and control structure. It analyzes the effects of air defense units' interconnection on the penetration target's kill probability. Firstly, the paper establishes a threat netting model with mutual information delay between the threat units and the reliability of the network, and proves the validity and feasibility of the mathematical model through Network Simulator Version 2 (NS-2). Next, based on this model, it creates a threat cost evaluation model for path planning. Then, combining the UCAV's dynamic constraints and attack area constraints, the paper proposes an autonomous path planning algorithm based on the improved A* algorithm. In order to enhance the operating efficiency of the algorithm, it proposes an improved path node search strategy. The simulation result demonstrates that this strategy can quickly generate a low altitude penetration trajectory for a UCAV. As the dynamic threat assessment method is employed in the planning, the algorithm is able to adapt easily to unexpected combat threat environments.

Cite this article

FU Xiaowei , LI Jinliang , GAO Xiaoguang . Defense Penetration Path Planning for UCAV Based on Threat Netting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(4) : 1042 -1052 . DOI: 10.7527/S1000-6893.2013.0494

References

[1] Office of the Secretary of Defense. Unmanned systems roadmap 2007-2032. Washington, D.C.: DoD, 2007.

[2] Szczerba R J. Threat netting for real-time, intelligent route planners//Proceedings of the 1999 Information, Decision, and Control. Piscataway: IEEE, 1999: 377-382.

[3] Du P, Yang C, Zhao D P. Fast path search algorithm for aircraft based on the threat netting[J]. Flight Dynamics, 2005, 23(3): 41-44. (in Chinese) 杜萍, 杨春, 赵东平. 基于威胁网的飞行器航迹快速搜索算法[J]. 飞行力学, 2005, 23(3): 41-44.

[4] Jiang L P, Yao Y, Zou M. Route planning research of low altitude penetration on threat netting[J]. Journal of Naval University of Engineering, 2008, 20(4): 51-55. (in Chinese) 姜礼平, 姚毅, 邹明. 威胁联网下低空突防航迹规划研究[J]. 海军工程大学学报, 2008, 20(4): 51-55.

[5] Tian K, Fu X W, Gao X G. The UAV online path planning under threat netting[J]. Journal of Northwestern Polytechnical University, 2011, 29(3): 367-373. (in Chinese) 田阔, 符小卫, 高晓光. 威胁联网下无人机路径在线规划[J]. 西北工业大学学报, 2011, 29(3): 367-373.

[6] Yan W M, Wu W M. Data structure[M]. Beijing: Tsinghua University Press, 2007: 186-192. (in Chinese) 严蔚敏, 吴伟民. 数据结构[M]. 北京: 清华大学出版社, 2007: 186-192.

[7] Lu Y, Wu Z W, Wang Y, et al. Introduction to network cybernetics[M]. Beijing: National Defense Industry Press, 2005: 321-323. (in Chinese) 卢昱, 吴忠望, 王宇, 等. 网络控制论概论[M]. 北京:国防工业出版社, 2005: 321-323.

[8] Tang Y H, Tang X W. Queneing theory foundation and analytic technology[M]. Beijing: Science Press, 2006: 259-260. (in Chinese) 唐应辉, 唐小我. 排队论基础与分析技术[M]. 北京: 科学出版社, 2006: 259-260.

[9] Liu Z, Yang S, Xiu B X, et al. Design and analysis of C2 robust organizational communication structure[J]. Journal of National University of Defense Technology, 2010, 32(5): 110-117. (in Chinese) 刘忠, 杨杉, 修保新, 等. C2组织鲁棒性信息交互结构设计及分析[J]. 国防科技大学学报, 2010, 32(5): 110-117.

[10] Wang X, Song B F, Guo X H. Analysis the aircraft's detection probability of radar[J]. Systems Engineering Theory & Practice, 2006, 26(6): 130-134. (in Chinese) 王旭, 宋笔锋, 郭晓辉. 飞行器被雷达发现概率的计算方法研究[J]. 系统工程理论与实践, 2006, 26(6): 130-134.

[11] Kabamba P, Meerkov S, Zeitz F. UCAV path planning in the presence of radar-guided surface-to-air missile threats, CGR04-14. Ann Arbor: Department of Electrical Engineering and Computer Science, University of Michigan, 2004.

[12] Chen G H, Li X H, Shen Y. The analysis of radar networking combat ability[M]. Beijing: National Defense Industry Press, 2006: 87-93. (in Chinese) 陈光和, 李修和, 沈阳. 组网雷达作战能力分析与评估[M]. 北京: 国防工业出版社, 2006: 87-93.

[13] Zhang Y, Zhang W P, Chen J, et al. Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1240-1251. (in Chinese) 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7): 1240-1251.

[14] Huang C Q, Cao L P, Weng X W, et al. Precision strike technology for UCAV[M]. Beijing: National Defense Industry Press, 2011: 123-128. (in Chinese) 黄长强, 曹林平, 翁兴伟, 等. 无人作战飞机精确打击技术[M]. 北京: 国防工业出版社, 2011: 123-128.

[15] Szczerba R J, Galkowski P, Glicktein I S, et al. Robust algorithm for real-time route planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 869-878.

[16] Ding M Y, Zheng C W, Zhou C P, et al. Unmanned aerial vehicles path planning[M]. Beijing: Publishing House of Electronics Industry, 2009: 111-126. (in Chinese) 丁明跃, 郑昌文, 周成平, 等. 无人飞行器航迹规划[M]. 北京: 电子工业出版社, 2009: 111-126.

[17] Shanmugavel M, Tsourdos A, Zbikowski R, et al. 3D dubins sets based coordinated path planning for swarm of UAVs//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006.

[18] Ba H T. Research on path planning of UAV. Xi'an: School of Automation, Northwestern Polytechnical University, 2006. (in Chinese) 巴海涛. 无人机航迹规划研究. 西安: 西北工业大学自动化学院, 2006.

Outlines

/