ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A Novel Frequency Domain Back-projection Algorithm for Ultra-high Resolution SAR Imaging
Received date: 2013-04-27
Revised date: 2013-11-26
Online published: 2013-12-25
Supported by
NUAA Fundamental Research Funds (NS2013023); National Natural Science Foundation of China (61201325, 61301212);Defense Industrial Technology Development Program(B2520110008)
In an ultra-high resolution airborne synthetic aperture radar (SAR), both the bandwidth of the transmitted signal and the synthetic aperture time are increased, which results in higher requirements for accuracy and efficiency of the imaging algorithms. Many problems exist when using the approximated frequency domain algorithms and time domain filtered backprojection (FBP) algorithm to process SAR data. Based on microlocal analysis, this paper proposes a novel frequency domain FBP (FD-FBP) algorithm. In this algorithm, Keystone transform is used to simplify the range cell migration expression of the SAR data in range Doppler(RD) domain first. Then, backprojection operation is implemented in RD domain, where shift, phase compensation and FFT operations are performed on the backprojected data of reference imaging points to obtain the imagery, which reduces the computational burden and realizes the combination of the efficiency of frequency domain algorithms and accuracy of the time domain algorithms. Finally, point target simulation and real-data processing result and their comparison with the FBP algorithm results validate this algorithm.
WANG Xin , WANG Ling , ZHU Daiyin . A Novel Frequency Domain Back-projection Algorithm for Ultra-high Resolution SAR Imaging[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(4) : 1053 -1063 . DOI: 10.7527/S1000-6893.2013.0475
[1] Carrara W G, Majewski R M, Goodman R S. Spotlight synthetic aperture radar signal processing algorithms[M]. Boston: Artech House, 1995: 15-27.
[2] Jakowatz C V, Wahl D E, Eichel P H, et al. Spotlight mode synthetic aperture radar: a signal processing approach[M]. Boston: Kluwer Academic Publisher, 1996: 252-267.
[3] Brenner A R. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40% relative bandwidth in X-band//Geoscience and Remote Sensing Symposium(IGARSS), 2012: 7390-7400.
[4] Hippler J. Ultrahigh resolution X-band SAR images with smartradar//EUSAR 2012, 2012: 426-428.
[5] Mao X H, Zhu D Y, Zhu Z D. 2-D autofocus algorithm for ultra-high resolution airborne spotlight SAR imaging[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1289-1295.(in Chinese) 毛新华, 朱岱寅, 朱兆达. 一种超高分辨率机载聚 束SAR两维自聚焦算法[J].航空学报, 2012, 33(7): 1289-1295.
[6] Wu Q S, Shi H Z, Xing M D, et al. High signal to noise ration and high resolution wide swath imaging[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):958-967.(in Chinese) 武其松, 石洪竺, 邢孟道, 等. 高信噪比、高分辨率宽测绘带成像[J]. 航空学报, 2010, 31(5): 958-967.
[7] Raney R K, Rung H, Bamler R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geosciences and Remote Sensing, 1994, 32(4): 786-799.
[8] Doren A W. Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images. Albuquerque: Sandia National Laboratories, 2006.
[9] Zhang S X, Xing M D, Xia X G, et al. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 150-154.
[10] Jaeschke T, Vogt M, Baer C, et al. Improvements in distance measurement and SAR-imaging applications by using ultra-high resolution mm-wave FMCW radar systems//Microwave Symposium Digest (MTT) 2012, 2012: 1-3.
[11] Clemente C, Soraghan J J. Range Doppler and chirp scaling processing of synthetic aperture radar data using the fractional Fourier transform[J].IET Signal Processing, 2012, 6(5): 503-510.
[12] Mao X H, Zhu D Y, Nie X, et al. A two dimensional overlapped subaperture polar format algorithm based on steeped-chirp signal[J]. Sensor, 2008, 8(5): 3438-3446.
[13] Doren N E. Space-variant post-filtering for wavefront curvature correction in polar-formatted spotlight-mode SAR imagery. Albuquerque: Sandia National Labs, 1999.
[14] Nolan C J, Cheney, M. Synthetic aperture inversion[J]. Inverse Problems, 2002, 18(1): 221.
[15] Yarman C E, Yazici B, Cheney M. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories[J]. IEEE Transactions on Image Processing, 2008, 17(1):84-93.
[16] Yarman C E, Yazici B. Synthetic aperture hitchhiker imaging[J]. IEEE Transactions on Imaging Processing, 2008, 17(11): 2156-2173.
[17] Basu S, Bresler. Y. O (N2log2N) filtered backprojection reconstruction algorithm for tomography[J]. IEEE Transactions on Image Processing, 2000, 9(10): 1760-1773.
[18] Vu V T, Sjogren T K, Pettersson M I. SAR imaging in ground plane using Fast Backprojection for mono-and bistatic cases//Radar Conference (RADAR), 2012: 0184-0189.
[19] Basu S, Breser Y. Error analysis and performance optimization of fast hierarchical backprojection algorithms[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1103-1117.
[20] Ulander L M H, Hellsten H, Stenstron G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronics Systems, 2003, 39(3): 760-776.
[21] Rodriguez-Cassola M, Prats P, Krieger G, et al. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2949-2966.
[22] Callow H J, Hansen R E, Saebo T O. Effect of approximation in fast factorized backprojection in synthetic aperture imaging of spot regions//OCEANS, 2006: 1-6.
[23] Vu V T, Sjogren T K, Pettersson M I, et al. Phase error calculation for fast time-domain bistatic SAR algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 49(1): 631-639.
[24] Zhu D, Li, Y, Zhu Z. A keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18-22.
/
〈 | 〉 |