Review

Overview of Air Vehicle Mission Planning Techniques

  • SHEN Lincheng ,
  • CHEN Jing ,
  • WANG Nan
Expand
  • College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China

Received date: 2012-11-09

  Revised date: 2013-12-23

  Online published: 2013-12-25

Abstract

Mission planning provides effective support and insurance for aircraft, especially military aircraft in mission success. First, the concept of air vehicle mission planning is introduced. Second, according to the research methodology and objects, the system architecture of mission planning is analyzed, which is divided into three levels: operation planning for multi-vehicle task allocation and coordination, tactic activity planning for the design of air-vehicle tactic activity employment, and route/trajectory planning for flight route or trajectory generation. Then, advances in the three levels of air vehicle mission planning are discussed, and the characteristics of the representative problem formulation and solution approaches are analyzed. Besides, their military applications are discussed. Finally, the key technique and future research trends on air vehicle mission planning are summarized.

Cite this article

SHEN Lincheng , CHEN Jing , WANG Nan . Overview of Air Vehicle Mission Planning Techniques[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(3) : 593 -606 . DOI: 10.7527/S1000-6893.2013.0500

References

[1] Bortoff S A. Path planning for UAVs[C]//Proceedings of the 2000 American Control Conference, 2000, 1(6): 364-368.

[2] Beard R W, McLain T W, Goodrich M, et al. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Automation, 2002, 18(6): 911-922.

[3] Bellingham J, Tillerson M, Richards A, et al. Multi-task allocation and path planning for cooperating UAVs[M]//Cooperative Control: Models, Applications and Algorithms. Dordrecht: Kluwer Academic Publishers, 2003: 23-41.

[4] Pongpunwattana A. Real-time planning for teams of autonomous vehicles in dynamic uncertain environments[D]. Seattle: University of Washington, 2004.

[5] Ownby M. Mixed initiative control of automa-teams (mica)-a progress report, AIAA-2004-6483[R]. Reston: AIAA, 2004.

[6] Qian J, Xu X Z, Liu Z Y. Exploration of cruise missile trajectory planning techniques[J].Aerodynamic Missile Journal, 2008(1): 16-19.(in Chinese) 钱进, 徐兴柱, 刘赵云. 巡航导弹航迹规划技术初探[J]. 飞航导弹, 2008(1): 16-19.

[7] Zhao H, He H C, Zhao Z T, et al. A terrain analysis method and the application of it to route planning[J]. Journal of Air Force Engineering University: Natural Science Edition, 2006, 7(4): 36-38. (in Chinese) 赵红, 何华灿, 赵宗涛, 等. 一种地形分析方法在航迹规划中的应用[J]. 空军工程大学学报: 自然科学版, 2006, 7(4): 36-38.

[8] Zhao L, Murthy V R. Optimal flight path planner for an unmanned helicopter by evolutionary algorithms, AIAA-2007-6741[R]. Reston: AIAA, 2007.

[9] Zhang G L, Cao Y H, Su Y. Helicopter optimal trajectory planning and terrain following[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(5): 594-599. (in Chinese) 张广林, 曹义华, 苏媛. 直升机最优航迹规划与地形跟踪[J]. 南京航空航天大学学报, 2008, 40(5): 594-599.

[10] Pan L. Research on multi-objective mission planning methods and implement techniques under complex environment[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2003. (in Chinese) 潘亮. 复杂环境下多目标任务规划方法及实现技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2003.

[11] Kang B N, Tang S, Starkey R P. Optimal trajectories of hypersonic vehicle for global reach, AIAA-2008-2595[R]. Reston: AIAA, 2008.

[12] Peng S C. Trajectory planning and guidance technology of near-space supersonic cruise missile[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2011. (in Chinese) 彭双春. 临近空间超声速巡航导弹轨迹规划与制导技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2011.

[13] Johnson C L. Inverting the control ratio: human control of large autonomous teams[C]//Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems, 2003.

[14] Chandler P R, Pachter M, Rasmussen S. UAV cooperative control[C]//Proceedings of the 2001 American Control Conference, 2001: 50-55.

[15] Sengupta R, Godbole D. Architectures for UCAV and results on multi-agent coordination[EB/OL]. (1998-07-21)[2012-11-07]. http://robotics.eecs.berkeley.edu/~sastry/ppt.files/ONR/prog-rep.ppt.

[16] Sastry S S. ONR UCAV project overview[EB/OL]. (1998-07-21)[2012-11-08]. http://robotics.eecs.berkeley.edu/~sastry/ppt.files/ONR/year1.ppt.

[17] Chandler P R, Pachter M. Hierarchical control for autonomous teams, AIAA-2001-4149[R]. Reston: AIAA, 2001.

[18] Chandler P R. Decentralized control for an autonomous team, AIAA-2003-6571[R]. Reston: AIAA, 2003.

[19] Rathinam S, Zennaro M. An architecture for UAV team control[C]//Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles, 2004: 1-7.

[20] Shamma J. Cooperative control of distributed autonomous vehicles in adversarial environments[EB/OL]. (2006-08-14)[2007-10-04]. http://www.seas.ucla.edu/coopcontrol/.

[21] Butenko S, Murphey R, Pardalos P. Cooperative control: models, applications and algorithms[M]. Dordrecht: Kluwer Academic Publishers, 2006: 96-111.

[22] Honeywell Technology Center. Multi-agent self-adaptive CIRCA[EB/OL]. [2012-11-08]. http://www.htc.honeywell.com/projects/ants/6-00-quadcharts.ppt.

[23] Campbell M, D’Andrea R, Schneider D, et al. RoboFlag games using systems based, hierarchical control[C]//Proceedings of the American Control Conference, 2003: 661-666.

[24] Wong E M, Bourgault F, Furukawa T. Multi-vehicle Bayesian search for multiple lost targets[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005: 3169-3174.

[25] Bryson M T, Sukkarieh S. Decentralised trajectory control for multi-UAV SLAM[C]//Proceeding of the 4th International Symposium on Mechatronics and its Applications, 2007.

[26] Shen L C, Gao G H, Chang W S, et al. An open system approach to mission route planning[J]. Journal of Astronautics, 1998, 19(2): 13-18. (in Chinese) 沈林成, 高国华, 常文森,等. 开放式飞行任务规划方法[J]. 宇航学报, 1998, 19(2): 13-18.

[27] Min C W, Yuan J P. Introduction of military aircraft route planning[J]. Flight Dynamics, 1998, 16(4): 14-19. (in Chinese) 闵昌万, 袁建平. 军用飞行器航迹规划综述[J]. 飞行力学, 1998, 16(4): 14-19.

[28] Liu C A, Wang H P, Li W J. Coordinated path planning of attacking unmanned aerial vehicles[J]. Journal of Northwestern Polytechnical University, 2003, 21(6): 707-710. (in Chinese) 柳长安, 王和平, 李为吉. 攻击无人机的协同航路规划[J]. 西北工业大学学报, 2003, 21(6): 707-710.

[29] Zheng C W, Ding M Y, Zhou C P, et al. Coordinated route planning for multiple air vehicles[J]. Journal of Astronautics, 2003, 24(2): 115-120. (in Chinese) 郑昌文, 丁明跃, 周成平, 等. 多飞行器协调航迹规划方法[J]. 宇航学报, 2003, 24(2): 115-120.

[30] Gao X G, Fu X W, Song S M. Trajectory planning for multiple uninhabited combat air vehicles[J]. Systems Engineering — Theory & Practice, 2004, 24(5): 140-143. (in Chinese) 高晓光, 符小卫, 宋绍梅. 多UCAV航迹规划研究[J]. 系统工程理论与实践, 2004, 24(5): 140-143.

[31] Ye Y Y. Research on mission planning for cooperative UCAVs[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2005. (in Chinese) 叶媛媛. 多UCAV协同任务规划方法研究[D]. 长沙:国防科学技术大学机电工程与自动化学院, 2005.

[32] Long T. Research on distributed task allocation and coordination for multiple UCAVs cooperative mission control[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2006. (in Chinese) 龙涛. 多UCAV协同任务控制中的分布式任务分配与任务协调技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2006.

[33] Yan P. Research on methodology of route planning and task assignment for unmanned air vehicles[D]. Wuhan: Institute of Pattern Recognition and Artificial Intelligence, Huazhong University of Science & Technology, 2006. (in Chinese) 严平. 无人飞行器航迹规划与任务分配方法研究[D]. 武汉: 华中科技大学图像识别与人工智能研究所, 2006.

[34] Huo X H. Research on modeling and rolling optimization methods for multi-UCAV dynamic cooperative mission planning[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2008. (in Chinese) 霍霄华. 多UCAV动态协同任务规划建模与滚动优化方法研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2008.

[35] Duan H B, Ding Q X, Chang J J, et al. Multi-UCAVs task assignment simulation platform based on parallel ant colony optimization[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(s1): 192-197. (in Chinese) 段海滨, 丁全心, 常俊杰, 等. 基于并行蚁群优化的多无人作战飞机任务分配仿真平台[J]. 航空学报, 2008, 29(s1): 192-197.

[36] Peng H. Research on distributed cooperative area searching of multiple unmanned aerial vehicles[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2009. (in Chinese) 彭辉. 分布式多无人机协同区域搜索中的关键问题研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2009.

[37] Li Y. Research on resources allocation and formation trajectories optimization for multiple UAVs ground attack mission[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2011. (in Chinese) 李远. 多UAV协同任务资源分配与编队轨迹优化方法研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2011.

[38] Wang N. Research on route/sensor/weapon delivery integrated mission planning for combat aircraft[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2012. (in Chinese) 王楠. 作战飞机航线/传感器/武器投放综合任务规划技术[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2012.

[39] Gil A E, Passino K M, Cruz J B. Stable cooperative surveillance[C]//Proceedings of the 44th IEEE Conference on Decision and Control, 2005: 2182-2187.

[40] Campbell M E, Whitacre M W. Cooperative tracking using vision measurements on SeaScan UAVs[J]. IEEE Transactions on Control Systems Technology, 2007, 15(4): 613-627.

[41] Lua C A, Altenburg K, Nygard K E. Synchronized multi-point attack by autonomous reactive vehicles with simple local communication[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 2003: 95-102.

[42] Kim J, Hespanha J P. Cooperative radar jamming for groups of unmanned air vehicles[C]//Proceedings of the 43rd Conference on Decision and Control, 2004, 1: 632-637.

[43] Secrest B R. Traveling salesman problem for surveillance mission using particel swarm optimization[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2003.

[44] O’Rourke K P, Bailey T G, Hill R, et al. Dynamic routing of unmanned aerial vehicles using reactive tabu search[J]. Military Operations Research Journal, 2001(6): 5-30.

[45] Alighanbari M. Task assignment algorithms for teams of UAVs in dynamic environments[D]. Cambridge: Massachusetts Institute of Technology, 2004.

[46] Nygard K E, Chandler P R, Pachter M. Dynamic network flow optimization models for air vehicle resource allocation[C]//Proceedings of the 2001 American Control Conference, 2001, 3: 1853-1858.

[47] Alvaro E G. Stability analysis of network-based cooperative resource allocation strategies[D]. Columbus: Ohio State University, 2003.

[48] Brown D T. Routing unmanned aerial vehicles while considering general restricted operating zones[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2001.

[49] Tian J. Modeling and optimization methods for multi-UAV cooperative reconnaissance mission planning problem[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2007. (in Chinese) 田菁. 多无人机协同侦察任务问题建模与优化技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2007.

[50] Shima T, Rasmussen S J, Sparks A G, et al. Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms [J]. Computers & Operations Research, 2006, 33(11): 3252-3269.

[51] Rasmussen S, Chandler P, Mitchell J W, et al. Optimal vs. heuristic assignment of cooperative autonomous unmanned air vehicles, AIAA-2003-5586[R]. Reston: AIAA, 2003.

[52] Wang L. Research on modeling and optimization methods for multi-UAV cooperative target tracking [D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2011. (in Chinese) 王林. 多无人机协同目标跟踪问题建模与优化技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2011.

[53] Atkinson M L. Contract nets for control of distributed agents in unmanned air vehicles, AIAA-2003-6532[R]. Reston: AIAA, 2003.

[54] Keviczky T, Borrelli F, Fregene K, et al. Decentralized receding horizon control and coordination of autonomous vehicle formations[J]. IEEE Transactions on Control Systems Technology, 2007, 16(1): 19-33.

[55] Li W, Cassandras C G. Centralized and distributed cooperative receding horizon control of autonomous vehicle missions[J]. Mathematical and Computer Modelling, 2006, 43(9-10): 1208-1228.

[56] Parunak H V D, Purcell M, O’Connell R. Digital pheromones for autonomous coordination of swarming UAVs, AIAA-2002-3446[R]. Reston: AIAA, 2002.

[57] Price I C. Evolving self-organized behavior for homogeneous and heterogeneous UAV or UCAV swarms[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2006.

[58] Dionne D, Rabbath C A. Multi-UAV decentralized task allocation with intermittent communications: the DTC algorithm[C]//Proceedings of the 2007 American Control Conference, 2007: 5406-5411.

[59] Godwin M F, Spry S, Hedrick J K. Distributed collaboration with limited communication using mission state estimates[C]//Proceedings of the 2006 American Control Conference, 2006: 2040-2046.

[60] Liao Y, Jin Y, Minai A A, et al. Information sharing in cooperative unmanned aerial vehicle teams[C]//Proceedings of the 44th IEEE Conference on Decision and Control, 2005: 90-95.

[61] Thomas B J. Mission-planning concepts for interaction of multiple reconnaissance platforms[C]//Airborne Reconnaissance XVII, 1993: 6-12.

[62] Tattelman P, Madsen D M, Mozer J B, et al. Optimizing infrared and night vision goggle sensor performance by exploiting weather effects[C]//RTO SET Symposium on "E-O Propagation, Signature and System Performance Under Adverse Meteorological Conditions Considering Out-of-Area Operations", 1998: 25-1-25-6.

[63] Skoglar P, Nygards J, Bjrstrm R, et al. Path and sensor planning framework applicable to UAV surveillance with EO/IR sensors[R]. Stockholm: Swedish Defence Research Agency, 2005.

[64] Yang M Z, Yin J, Yu L. Research on operation distance of TV homer[J]. Electronics Optics & Control, 2003, 10(2): 27-30. (in Chinese) 杨满忠, 尹健, 于雷. 电视导引头作用距离研究[J]. 电光与控制, 2003, 10(2): 27-30.

[65] Chen Q. Study on systems of airborne squint mode and forward looking mode synthetic aperture radar[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2007. (in Chinese) 陈琦. 机载斜视及前视合成孔径雷达系统研究[D]. 北京: 中国科学院电子学研究所, 2007.

[66] West II W J. Developmental testing of a laser-guided bomb simulation, AIAA-2008-1629[R]. Reston: AIAA, 2008.

[67] Siewert C V L, Sussingham M J C, Farm J A. 6-DOF enhancement of precision guided munitions testing, AIAA-1998-0396[R]. Reston: AIAA, 1998.

[68] Geng L N. Study on release region calculation for guided bombs[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2009. (in Chinese) 耿丽娜. 制导炸弹投放区计算研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2009.

[69] Zhang Y, Wang N, Chen J, et al. Research on launch acceptable region for guided bombs in air-to-ground multi-target attack[J]. Acta Armamentarii, 2011, 32(12): 1474-1480. (in Chinese) 张煜, 王楠, 陈璟, 等. 空地多目标攻击中制导炸弹可投放区计算研究[J]. 兵工学报, 2011, 32(12): 1474-1480.

[70] Cao B W, Jiang C S, Yang M Z. Research on the damage potential of TV-command-guided air-to-ground missiles [J]. Electronics Optics & Control, 2004, 11(2): 31-34. (in Chinese) 曹邦武, 姜长生, 杨满忠. 电视指令制导空地导弹对目标的毁伤性能研究[J]. 电光与控制, 2004, 11(2): 31-34.

[71] Chi Y K. Evaluation of radar performance degradation due to standoff jamming[D]. Monterey: Naval Postgraduate School, 1992.

[72] Mears M J. Cooperative electronic attack using unmanned air vehicles[C]//Proceedings of the 2005 American Control Conference, 2005, 5: 3339-3347.

[73] Kim J, Hespanha J P. Cooperative radar jamming for groups of unmanned air vehicles[C]//Proceedings of the 43rd IEEE Conference on Decision and Control, 2004, 1: 632-637.

[74] Snyder D E, McNeese M D, Zaff B S, et al. Knowledge acquisition of tactical air-to-ground mission information using concept mapping[C]//Proceedings of the 1992 National Aerospace and Electronics Conference, 1992, 2: 668-674.

[75] Bo T. Research on human behavior representation of flighter dogfight combat[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2002.(in Chinese) 薄涛. 格斗空战行为建模技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2002.

[76] Wang N, Li Y, Bu Y L, et al. SAR sensor employment planning for tactical aircrafts[C]//The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010: 603-608.

[77] Wang N, Zhang W P, Zhang C J, et al. Optimization of tactical aircraft weapon delivery using tactics templates[C]//2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR), 2010: 21-27.

[78] Frazzoli E, Dahleh M A, Feron E. Real-time motion planning for agile autonomous vehicles[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 116-129.

[79] Goerzen C, Kong Z, Mettler B. A survey of motion planning algorithms from the perspective[J]. Journal of Intelligent & Robotic Systems, 2010, 57(1-4): 65-100.

[80] McLain T W, Chandler P R, Rasmussen S, et al. Cooperative control of UAV rendezvous[C]//Proceedings of the 2001 American Control Conference, 2001, 3: 2309-2314.

[81] Kavraki L E, Sevestka P, Latombe J C, et al. Probabilistic roadmaps for path planning in high dimensional configuration space[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580.

[82] LaValle S M. Rapidly-exploring random trees: a new tool for path planning[R]. Ames: Computer Science Department, Iowa State University, 1998.

[83] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning[J]. International Journal of Robotics Research, 2011, 30(7): 846-894.

[84] Canny J F. The complexity of robot motion planning[M]. Cambridge: MIT Press, 1988: 1-18.

[85] Gao G H. Research on multi-path planning problem in large area[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 1999.(in Chinese) 高国华. 大范围多路径规划问题研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 1999.

[86] Betts J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.

[87] Yong E M, Chen L, Tang G J. Survey of aircraft trajectory optimization methods[J]. Journal of Astronautics, 2008, 29(2): 398-406. (in Chinese) 雍恩米, 陈磊, 唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2): 398-406.

[88] Huang G Q, Lu Y P, Nan Y. A survey of numerical algorithms for trajectory optimization of flight vehicles[J]. Sci China Tech Sci, 2012, 42(9): 1016-1036. (in Chinese) 黄国强, 陆宇平, 南英. 飞行器轨迹优化数值算法综述[J]. 中国科学: 技术科学, 2012, 42(9): 1016-1036.

[89] Yang K, Sukkarieh S, Kang Y. Adaptive nonlinear model predictive path tracking control for a fixed-wing unmanned aerial vehicle, AIAA-2009-5622[R]. Reston: AIAA, 2009.

[90] Zhang Y, Chen J, Shen L C. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control[J]. Chinese Journal of Aeronautics, 2013, 26(4): 1038-1056.

[91] Huntington G T. Advancement and analysis of Gauss pseudospectral transcription for optimal control problems[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2007.

[92] Zhang Y, Chen J, Shen L C. Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack[J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 536-552.

[93] Zhang Y, Zhang W P, Chen J, et al. Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1240-1251. (in Chinese) 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7): 1240-1251.

[94] Yong E M, Tang G J, Chen L. Rapid trajectory optimization [JP2]for hypersonic reentry vehicle via Gauss pseudospectral[JP] method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772. (in Chinese) 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.

[95] Liu H F, Chen S F, Shen L C, et al. Tactical trajectory planning for stealth unmanned aerial vehicle to win the radar game[J]. Defence Science Journal, 2012, 62(6): 375-381.

[96] Chen S F, Liu H F, Shen L C, et al. Penetration trajectory planning based on radar tracking features for UAV[J]. Aircraft Engineering and Aerospace Technology, 2012, 85(1): 62-71.

[97] Milam M B. Real-time optimal trajectory generation for constrained dynamical systems[D]. Pasadena: California Institute of Technology, 2003.

[98] Frazzoli E. Robust hybrid control for autonomous vehicle motion planning[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2001.

[99] Air force mission support system (AFMSS)[EB/OL]. (1999-01-09)[2012-11-07]. http://www.fas.org/man/dod-101/sys/ac/equip/afmss.htm.

[100] AN-SYQ-21 Tactical automated mission planning system (TAMPS)[EB/OL]. (1999-01-11) [2012-11-07]. http://www.fas.org/man/dod-101/[JP2]sys/ship/weaps/tamps.[JP]

htm.

[101] AN/TYQ-77 Aviation mission planning system (AMPS)[EB/OL]. (2011-07-07) [2012-11-07]. http://www.globalsecurity.org/military/systems/aircraft[JP2]/systems/an-[JP]

tyq-77.htm.

[102] Joint mission planning system[EB/OL]. (2011-07-07) [2012-11-07]. http://www.globalsecurity.org/military/systems/aircraft/systems/jmps.htm.

[103] Leavitt C A. Real-time in-flight planning[C]//Proceedings of the IEEE 1996 National Aerospace and Electronics Conferenc, 1996, 1: 83-89.

[104] F-16 AFTI Advanced fighter technology integration[EB/OL]. [2012-11-07]. http://www.f-16.net/f-16_versions_article13.html.

[105] Zhang Y. Research on air-to-ground attack trajectory planning for combat aircraft[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2012. (in Chinese) 张煜. 作战飞机空对地攻击轨迹规划技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2012.

[106] HELIPSYS[EB/OL]. [2013-12-09]. http://www.sagem.com/spip.php?rubrique76.

Outlines

/