ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Large Eddy Simulation of Flow in a Plane Supersonic Ejector
Received date: 2013-11-14
Revised date: 2013-12-16
Online published: 2013-12-19
Supported by
National Natural Science Foundation of China (11202100); Natural Science Fund in Jiangsu Province (BK2011723); Fundamental Research Funds for the Central Universities (NS2012032); Jiangsu Planned Projects for Postdoctoral Research Funds (0902001C); Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
The flow in a plane supersonic ejector is investigated numerically using a large eddy simulation (LES) technique. In order to validate the reliability of LES method, quantitative comparisons of the calculated result with experimental data are made including the velocity and temperature profiles. They show that the present computational results agree well with the experimental data, which indicates that the LES method can be used to study this problem. The instability processes of the primary jet in the ejector are the same as those of the free jet, which can be divided into three different stages, i.e., shear layer growth, instability and mixing. Distributions of the Lamb vector divergence indicate that the mixing process is restricted in a narrow zonal-area. Power spectral density analysis of pressure signals in the mixing section shows that the flow mixing process is dominated by the primary jet instability, and the characteristic Strouhal number is approximately 0.27.
Key words: compressible flow; ejector; jet; large eddy simulation; turbulence
XU Changyue , ZHOU Tao , WANG Conglei . Large Eddy Simulation of Flow in a Plane Supersonic Ejector[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(8) : 2136 -2143 . DOI: 10.7527/S1000-6893.2013.0493
[1] Riffat S B, Jiang L, Gan G. Recent development in ejector technology-a review[J]. International Journal of Ambient Energy, 2005, 26(1): 13-26.
[2] Bartosiewicz Y, Aidoun Z, Desevaux P, et al. Numerical and experimental investigations on supersonic ejectors[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 56-70.
[3] Keenan J H, Newman E P, Lustwerk F. An investigation of ejector design by analysis and experiments[J]. Journal of Applied Mechanics, 1950, 72(3): 299-309.
[4] Huang B J, Chang J M, Wang C P, et al. A 1-D analysis of ejector performance[J]. International Journal of Refrigeration, 1999, 22(5): 354-364.
[5] Kim S, Kwon S. Experimental determination of geometric parameters for an annular injection type supersonic ejector[J]. Journal of Fluids Engineering, 2006, 128(6): 1164-1171.
[6] Kim S, Kwon S. Experimental investigation of an annular injection supersonic ejector[J]. AIAA Journal, 2006, 44(8): 1905-1908.
[7] Bouhanguel A, Desevaux P, Bailly Y, et al. Flow velocity investigation by particle image velocimetry in supersonic air ejector[J]. Applied Mechanics and Materials, 2012, 232: 256-260.
[8] Chen J, Wang Z G, Wu J P, et al. Effect of the second-throat on the performance of supersonic-supersonic ejectors[J]. Science China, 2012, 55(9): 2530-2537.
[9] Riffat S B, Omer S A. CFD modeling and experimental investigation of an ejector refrigeration system using methanol as the working fluid[J]. International Journal of Energy Research, 2001, 25(2): 115-128.
[10] Varga S, Oliveira A C, Diaconu B. Numerical assessment of steam ejector efficiencies using CFD[J]. International Journal of Refrigeration, 2009, 32(6): 1203-1211.
[11] Desevaux P, Mellal A, Alves de Sousa Y. Visualization of secondary flow choking phenomena in a supersonic air ejector[J]. Journal of Visualization, 2004, 7(3): 249-256.
[12] Martin M P, Piomelli U, Gandler G V. Subgrid-scale models for compressible large-eddy simulations[J]. Theoretical and Computational Fluid Dynamics, 1999, 13(5): 361-376.
[13] Piomelli U. Large-eddy simulation: achievements and challenges[J]. Progress in Aerospace Sciences, 1999, 35(4): 335-362.
[14] Xu C Y, Chen L W, Lu X Y. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010, 665: 238-273.
[15] Xu C Y, Zhao L Q, Sun J H. Large-eddy simulation of the compressible flow past a tabbed cylinder[J]. Chinese Science Bulletin, 2012, 57(24): 3203-3210.
[16] Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics, 2006, 557: 29-61.
[17] Xu C Y, Chen L W, Lu X Y. Effect of Mach number on transonic flow past a circular cylinder[J]. Chinese Science Bulletin, 2009, 54(11): 1886-1893.
[18] Xu C Y, Zhao L Q, Wang C L, et al. Characteristics analysis of the transonic flow past a circular cylinder towards the critical Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1984-1992. (in Chinese) 许常悦, 赵立清, 王从磊, 等. 趋于临界马赫数的圆柱跨声速绕流特性分析[J]. 航空学报, 2012, 33(11): 1984-1992.
[19] Chen L W, Xu C Y, Lu X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643: 97-126.
[20] Chen L W, Xu C Y, Lu X Y. Large-eddy simulation of opposing-jet-perturbed supersonic flow past a hemispherical nose[J]. Modern Physics Letters B, 2010, 24(13): 1287-1290.
[21] Gilbert G B, Hill P G. Analysis and testing of two-dimensional slot nozzle ejectors with variable area mixing sections, NASA CR-2251. Washington, D.C.: NASA, 1973.
[22] Georgiadis N J, Chitsomboon T, Zhu J. Modification of the two-equation turbulence model in NPARC to a Chien low Reynolds number k-ε formulation, NASA TM-106710. Washington, D.C.: NASA, 1994.
[23] Hussain J J. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94.
[24] Xu C Y, Wu D, Sun J H. Large eddy simulation of compressible turbulent round jet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 583-587. (in Chinese) 许常悦, 吴丹, 孙建红. 可压缩湍流圆孔射流的大涡模拟[J]. 南京航空航天大学学报, 2010, 42(5): 583-587.
[25] Wu J Z, Lu X Y, Zhuang L X. Intergal force acting on a body due to local flow structures[J]. Journal of Fluid Mechanics, 2007, 576: 265-286.
[26] Hamman C W, Klewichi J C, Kirby R M. On the Lamb vector divergence in Navier-Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610: 261-284.
/
〈 | 〉 |