Solid Mechanics and Vehicle Conceptual Design

Multi-body Dynamics Analysis Method for Vibration of Flexible Guide Activated by Moving Missile

  • WANG Linpeng ,
  • WANG Hanping ,
  • YANG Ming ,
  • BI Shihua ,
  • WANG Shaozhu
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2013-05-08

  Revised date: 2013-11-29

  Online published: 2013-12-17

Supported by

Ministry Level Project

Abstract

For a launching dynamics model of a guide-type missile launcher system based on the flexible contact method, the stability is unsatisfactory, and the calculation scale is also too large when the guide shape is complex. To solve this problem, a modeling method is proposed which substitutes the flexible point-curve joint following the flexible guide for the contact relationship between the missile directional supports and the guide. By comparing the modal and static analysis results of the finite element model, the single segment guide dynamics model and the multi-segment guide dynamics model, the stress stiffening effect is verified and eliminated. Taking the stress stiffening effect of the flexible guide into consideration, a multi-body dynamics model is established which describes the vibration of the flexible guide activated by a moving missile. The simulation results show that the method not only effectively resolves the low efficiency of the flexible body contact algorithm, significantly improves the calculation stability, but also demonstrates good simulation accuracy. This method may provide a new way for modeling flexible multi-body dynamics of complex missile launcher systems.

Cite this article

WANG Linpeng , WANG Hanping , YANG Ming , BI Shihua , WANG Shaozhu . Multi-body Dynamics Analysis Method for Vibration of Flexible Guide Activated by Moving Missile[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(3) : 756 -763 . DOI: 10.7527/S1000-6893.2013.0481

References

[1] Esmailzaden E, Ghorashi M. Vibration analysis of beams traversed by uniformed partially distributed moving masses[J]. Journal of Sound and Vibration, 1995, 184(1): 9-17.

[2] Thambiratnam D, Zhuge Y. Dynamics analysis of beams on an elastic foundation subjected to moving loads[J]. Journal of Sound and Vibration, 1996, 198(2): 149-169.

[3] Li H B, Bi S H, Fang Y Q, et al. Experiment research and vibration analysis of beams activated by moving rigid body[J]. Journal of Beijing Institute of Technology, 1999, 19(1): 18-22. (in Chinese) 李海斌, 毕世华, 方远乔, 等. 移动刚体激励的梁振动分析和实验[J]. 北京理工大学学报, 1999, 19(1): 18-22.

[4] Chen Q, Yang G L,Wang X F, et al. Numerical analysis for dynamic responses of beams subjected to moving loads with non-uniform motion[J]. Journal of Nanjing University of Science and Technology, 2011, 35(2): 204-208. (in Chinese) 陈强, 杨国来, 王晓锋, 等. 变速移动载荷作用下梁的动态响应数值模拟[J]. 南京理工大学学报,2011, 35(2): 204-208.

[5] Ge J L, Yang G L,Wang Z X, et al. Modeling simulation and experiment of cantilever beams activated by moving rigid body[J]. Journal of Nanjing University of Science and Technology, 2012, 36(5): 831-834. (in Chinese) 葛建立, 杨国来, 王兆旭, 等. 移动刚体-悬臂梁耦合系统建模仿真及实验研究[J]. 南京理工大学学报, 2012, 36(5): 831-834.

[6] Bi S H, Li H B, Li J H et al. Active control of initial disturbances for rockets and missile[J]. Journal of Beijing Institute of Technology, 2001, 10(2): 143-148.

[7] Yao R C, Tang G L, Song T L. Rocket and missile launcher system dynamics[M]. Beijing: Beijing Institute of Technology Press, 1996: 43-65. (in Chinese) 姚仁昌, 唐国梁, 宋廷伦. 火箭导弹发射动力学[M].北京: 北京理工大学出版社, 1996: 43-65.

[8] Yao R C, Zhang B. Rocket and missile launcher design[M]. Beijing: Beijing Institute of Technology Press, 1998: 51-72. (in Chinese) 姚仁昌, 张波. 火箭导弹发射装置设计[M]. 北京: 北京理工大学出版社, 1998: 51-72.

[9] Craig R R, Bampton M C C. Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6(7): 1313-1319.

[10] Hurty W C. Dynamic analysis of structural systems using component modes[J]. AIAA Journal, 1965, 3(4): 678-685.

[11] Fu Z F, Hua H X. Theory and applications of modal analysis[M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 33-45. (in Chinese) 傅志方, 华宏星. 模态分析理论与应用[M]. 上海: 上海交通大学出版社, 2000: 33-45.

[12] Wang X H, An F, Cao L J, et al. Direct transformation method for mode synthesis[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 92-98. (in Chinese) 汪晓虹, 安方, 曹立娟, 等. 模态综合的直接变换法[J]. 航空学报, 2009, 30(1): 92-98.

[13] Hong J Z, Liu J Y. Dynamics and modeling of mechanical systems[M]. Beijing: Higher Education Press, 2011: 77-90. (in Chinese) 洪嘉振, 刘锦阳. 机械系统计算动力学与建模[M].北京: 高等教育出版社, 2011: 77-90.

[14] Zhang X, Wang T S. Computational dynamics[M]. Beijing: Tsinghua University Press, 2007: 25-60. (in Chinese) 张雄, 王天舒. 计算动力学[M]. 北京: 清华大学出版社, 2007: 25-60.

[15] Cui N G, Liu J F, Rong S Y. Solar sail spacecraft dynamic modeling and solving[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1566-1571. (in Chinese) 崔乃刚, 刘家夫, 荣思远. 太阳帆航天器动力学建模与求解[J]. 航空学报, 2010, 31(8): 1566-1571.

[16] Wang Z B, Peng R Z, Gong Z G. The creating principle and realization of B-spline curve[J]. Journal of Shihezi University: Natural Science, 2009(1): 118-121. (in Chinese) 王增波, 彭仁忠, 宫兆刚. B样条曲线生成原理及实现[J]. 石河子大学学报: 自然科学版, 2009(1): 118-121.

[17] Xu J, Ke Y L, Qu W W. B-spline curve approximation based on feature points automatic recognition[J]. Journal of Mechanical Engineering, 2009(11): 212-217. (in Chinese) 徐进, 柯映林, 曲巍崴. 基于特征点自动识别的B样条曲线逼近技术[J]. 机械工程学报, 2009(11): 212-217.

[18] Mao Z Y, Liu Z J. A trajectory planning method for cubic uniform B-spline curve[J]. China Mechanical Engineering, 2010, 21(11): 2569-2572. (in Chinese) 毛征宇, 刘中坚. 一种三次均匀B样条曲线的轨迹规划方法[J]. 中国机械工程, 2010, 21(11): 2569-2572.

[19] Su X H, Li D, Tang H X, et al. Computer graphics[M]. 2nd ed. Beijing: Posts & Telecom Press, 2010: 80-111. (in Chinese) 苏小红, 李东, 唐好选, 等. 计算机图形学实用教程[M]. 2 版. 北京:人民邮电出版社, 2010: 80-111.

[20] Li W Q, Liu X. A parallel chasing algorithm for solving cyclic tridiagonal equations[J]. Review Science & Technology, 2009, 27(18): 90-93. (in Chinese) 李文强, 刘晓. 追赶法并行求解循环三对角方程组[J]. 科技导报, 2009, 27(18): 90-93.

[21] Wang L G, Tan L, Luo D F, et al. A forward elimination and backward substitution algorithm for large-scale banded linear systems[J]. Journal of University of South China: Science and Technology, 2011, 25(4): 70-74. (in Chinese) 王礼广, 谭林, 罗迪凡,等. 大规模带状线性方程组的追赶法[J]. 南华大学学报: 自然科学版, 2011, 25(4): 70-74.

[22] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2): 139-151.

[23] Wang Y, Huston R L. A lumped parameter method in the nonlinear analysis of flexible multi-body systems[J]. Computer & Structures, 1994, 50(5): 421-432.

Outlines

/