Material Engineering and Mechanical Manufacturing

Tool Axis Planning for Five-axis Machining of Complex Channel Parts

  • LI Xiangyu ,
  • REN Junxue ,
  • LIANG Yongshou ,
  • TIAN Rongxin ,
  • LI Leidong
Expand
  • 1. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology of the Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Beijing Power Machinery Institute, Beijing 100074, China

Received date: 2013-10-18

  Revised date: 2013-12-05

  Online published: 2013-12-10

Supported by

National Science and Technology Major Project(2013ZX04011031); National Natural Science Foundation of China (51005184, 51375393); Aeronautical Science Foundation of China (2012ZE53061, 2013ZE53060)

Abstract

A new method of planning is proposed to obtain a stably changing tool axis in five-axis machining of complex channel parts. First, an efficient approach to obtain the accurate boundary of the feasible space of tool axis is established by dispersing the feasible space uniformly. Secondly, according to the proposed planning criteria, the feasible spaces of a tool axis are calculated which satisfy the constraints of the angular acceleration of the machine tool along a tool path, and a method is proposed to make the rotational coordinates change linearly. Finally, considering both the proposed tool axis planning method and the desired scallop height, tool axis vectors are determined and then compared with the results of a commercial software, which shows that the proposed method obtains linearly changing rotational coordinates along a tool path. The maximum angular acceleration of the rotational axis and the average of the scallop height of machined surfaces are reduced respectively to lower than 10% and by 22% of the commercial software. The machining stability and machined surface quality are also obviously improved.

Cite this article

LI Xiangyu , REN Junxue , LIANG Yongshou , TIAN Rongxin , LI Leidong . Tool Axis Planning for Five-axis Machining of Complex Channel Parts[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(9) : 2641 -2651 . DOI: 10.7527/S1000-6893.2013.0486

References

[1] Ren J X, Jiang Z N, Yao C F, et al. Process for 4-axis high efficiency slot plunge milling of open blisk[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1692-1698. (in Chinese) 任军学, 姜振南, 姚倡锋, 等. 开式整体叶盘四坐标高效开槽插铣工艺方法[J]. 航空学报, 2008, 29(6): 1692-1698.

[2] Zhang Y, Zhang D H, Wu B H, et al. An adaptive optimizing tool orientation method for 5-axis toroidal-end milling of free-form surfaces[J]. China Mechanical Engineering, 2008, 19(8): 945-948. (in Chinese) 张莹, 张定华, 吴宝海, 等. 复杂曲面环形刀五轴加工的自适应刀轴矢量优化方法[J]. 中国机械工程, 2008, 19(8): 945-948.

[3] Lasemi A, Xue D, Gu P. Recent development in CNC machining of freeform surfaces: A state-of-the-art review[J]. Computer-Aided Design, 2010, 42(7): 641-654.

[4] Rao A, Sarma R. On local gouging in five-axis sculptured surface machining using flat-end tools[J]. Computer-Aided Design, 2000, 32(7): 409-420.

[5] Lee Y S. Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining[J]. Computer-Aided Design, 1997, 29(7): 507-521.

[6] Ding S, Mannan M A, Poo A N. Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces[J]. Computer-Aided Design, 2004, 36(13): 1281-1294.

[7] Castagnetti C, Duc E, Ray P. The domain of admissible orientation concept: a new method for five-axis tool path optimization[J]. Computer-Aided Design, 2008, 40(9): 938-950.

[8] Yin Z P, Ding H, Xiong Y L. Accessibility analysis in manufacturing processes using visibility cones[J]. Science in China: Series E, 2003, 33(11): 979-988. (in Chinese) 尹周平, 丁汉, 熊有伦. 基于可视锥的可接近性分析方法及其应用[J]. 中国科学: E 辑, 2003, 33(11): 979-988.

[9] Peng F Y, Su Y C, Zou X M, et al. Global interference and collision detection based on hierarchical OBBTree in the 5-axis machining of impeller[J]. China Mechanical Engineering, 2007, 18(3): 304-307. (in Chinese) 彭芳瑜, 苏永春, 邹孝明, 等. 大型螺旋桨五轴加工中基于方向包围盒层次树的全局干涉碰撞检测[J]. 中国机械工程, 2007, 18(3): 304-307.

[10] Ding H, Zhu L M. Geometric theories and methods for digital manufacturing of complex surfaces[M]. Beijing: Science Press, 2011: 327-338. (in Chinese) 丁汉, 朱利民. 复杂曲面数字化制造的几何学理论和方法[M]. 北京: 科学出版社, 2011: 327-338.

[11] Nan C F, Wu B H, Zhang D H. A global interference free tool path generation algorithm for five-axis end milling of complex tunnel parts[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 2103-2108. (in Chinese) 南长峰, 吴宝海, 张定华. 复杂通道类零件五坐标加工全局干涉处理方法[J]. 航空学报, 2010, 31(10): 2103-2108.

[12] Ho M C, Hwang Y R, Hu C H. Five-axis tool orientation smoothing using quaternion interpolation algorithm[J]. International Journal of Machine Tools and Manufacture, 2003, 43(12): 1259-1267.

[13] Geng C, Yu D, Zhang H. Tool orientation smooth interpolation algorithm for five-axis CNC machining[J]. Journal of Mechanical Engineering, 2013, 49(3): 180-185. (in Chinese) 耿聪, 于东, 张函. 五轴联动刀轴矢量平滑插补算法[J]. 机械工程学报, 2013, 49(3): 180-185.

[14] Jun C S, Cha K, Lee Y S. Optimizing tool orientations for 5-axis machining by configuration-space search method[J]. Computer-Aided Design, 2003, 35(6): 549-566.

[15] Wang N, Tang K. Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath[J]. Computer-Aided Design, 2007, 39(10): 841-852.

[16] Yoon J H, Pottmann H, Lee Y S. Locally optimal cutting positions for 5-axis sculptured surface machining[J]. Computer-Aided Design, 2003, 35(1): 69-81.

[17] Xu R F, Chen Z T, Chen W Y, et al. Dual drive curve tool path planning method for 5-axis NC machining of sculptured surfaces[J]. Chinese Journal of Aeronautics, 2010, 23(4): 486-494.

Outlines

/