ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimization Design of Variable Mach Number Wind Tunnel Nozzle by Rotating Profile
Received date: 2013-05-17
Revised date: 2013-11-25
Online published: 2013-12-08
Supported by
National Natural Science Foundation of China (90916023, 51176075)
The study of variable Mach number wind tunnel nozzle with good performance and easy adjustment, which can generate fast response on the exit Mach number by rotating the tunnel profile, is now a focus of research. In this paper, corresponding to the wind tunnel nozzle with exit Mach numbers varying from 2.0 to 4.0, an optimization design platform based on the iSIGHT and Fluent softwares is built to find out the effect of the design factors on the exit flowfield, including the design Mach number, initial expansion line, boundary layer correction, etc. In order to obtain the best baseline profile, the NSGAⅡ algorithm is used to research the Kriging model approximation constructed based on the experimental design points. Then, 2D and 3D numerical simulations are implemented to verify the baseline profile's performance. It is shown that, uniformity of the exit flowfield with Mach numbers varying from 2.0 to 4.0 by rotating the baseline profile can satisfy the requirements of the Military Standard of China (GJB-1179-91) for the wind tunnel nozzle,which is originally set for the Mach number uniformity at the exit of the wind tunnel nozzle designed on the single design point with a fixed profile. The present work has laid a solid foundation for the application of the variable Mach number wind tunnel in future.
FAN Zhipeng , XU Jinglei , LYU Zheng , MO Jianwei . Optimization Design of Variable Mach Number Wind Tunnel Nozzle by Rotating Profile[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(5) : 1216 -1225 . DOI: 10.7527/S1000-6893.2013.0478
[1] Lam D W. Use of PARC code to estimate the off-design transonic performance of an over/under turboramjet nozzle, AIAA-1995-2616. Reston: AIAA, 1995.
[2] Zhao L F, Wang X, Liu X B, et al. Performance simulation and conceptual investigation of turbo ramjet engine in transition period[J]. Journal of Engineering Thermophysics, 1999, 20(1): 9-12. (in Chinese) 赵丽凤, 王逊, 刘小兵, 等. 涡轮-冲压组合发动机模态过渡段性能模拟和概念探讨[J]. 工程热物理学报, 1999, 20(1): 9-12.
[3] Seely J, Abel L. An analysis of alternatives to provide a varying Mach number test capability at APTU, AIAA-2006-8044. Reston: AIAA, 2006.
[4] Montgomery P A, Doug G. Test and evaluation of hypersonic aeropropulsion systems along flight trajectories in a time-varying flight environment, AIAA-2005-3900. Reston: AIAA, 2005.
[5] Tichenor N, Semper M, Bowersox R, et al. Calibration of an actively controlled expansion hypersonic wind tunnel, AIAA-2010-4793. Reston: AIAA, 2010.
[6] Kitamura E, Mitani T, Sakuranaka N, et al. Variable nozzles for aerodynamic testing of scramjet engines//International Congress on Instrumentation in Aerospace Simulation Facilities, 2005: 348-354.
[7] Zhang M L, Li T L, Yi S H, et al. Aerodynamic design optimization technique of supersonic nozzle//The First Modern Experimental Aerodynamics Conference, 2007: 31-34. (in Chinese) 张敏莉, 李廷林, 易仕和, 等. 超声速喷管优化设计与研究//第一届近代实验空气动力学会议, 2007: 31-34.
[8] Xiong B, Lin X D, Yang Y, et al. Jack's unit influence curve association study of the flexible plate nozzle and application in 2 m×2 m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 88-91. (in Chinese) 熊波, 林学东, 杨洋, 等. 挠性壁喷管撑杆单位影响曲线相关性研究及其在2 m×2 m超声速风洞中的应用[J]. 实验流体力学, 2013, 27(4): 88-91.
[9] Tilmann C P, Bowersox R D W, Buter T A. On the design and construction of an academic Mach 5 wind tunnel, AIAA-1999-0800. Reston: AIAA, 1999.
[10] Quan Z B, Xu J L, Li B, et al. Cold flow experiment and numerical study on nonuniform entrance of scramjet nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2308-2315. (in Chinese) 全志斌, 徐惊雷, 李斌, 等. 超燃冲压发动机尾喷管非均匀进口的冷流试验与数值模拟[J]. 航空学报, 2013, 34(10): 2308-2315.
[11] Yun Q L, Sun S P, Xu M F, et al. GJB 1179-91 Specification for flow field quality of high and low speed wind tunnels[S]. Mianyang: China Aerodynamics Research and Revelopment Center, 1991: 2-4. (in Chinese) 恽起麟, 孙绍鹏, 徐明方, 等. GJB1179-91 高速风洞低速风洞流场品质规范[S].绵阳: 中国空气动力研究与发展中心, 1991: 2-4.
[12] Lai Y Y. Parameter optimization theory and explain examples in Isight[M]. Beijing: Beihang University Press, 2012: 66-79. (in Chinese) 赖宇阳. Isight参数优化理论与实例详解[M]. 北京: 北京航空航天大学出版社, 2012: 66-79.
[13] Zucrow M J, Hoffman J D. Gas dynamics-multidimensional flow[M]. New York: Wiley, 1977: 160-169.
[14] Qiu Y B. Experimental design and data processing[M]. Hefei: University of Science and Technology of China Press, 2008: 20-28. (in Chinese) 邱轶兵. 试验设计与数据处理[M]. 合肥: 中国科学技术大学出版社, 2008: 20-28.
[15] Hedayat S, Sloane N J A, Stufken J. Orthogonal arrays theory and applications[M]. New York: Springer, 1999: 11-85.
[16] Wang X Y. Gas dynamics foundation[M]. Xi'an: Northwestern Polytechnical University Press, 2006: 261-289. (in Chinese) 王新月. 气体动力学基础[M]. 西安: 西北工业大学出版社, 2006: 261-289.
[17] Simpson T W, Mauery T M, Mistree F. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12): 2233-2241.
[18] Xuan G N, Cheng R W. Genetic algorithms and engineering optimization[M]. Beijing: Tsinghua University Press, 2004: 76-108. (in Chinese) 玄光男, 程润伟. 遗传算法与工程优化[M]. 北京: 清华大学出版社, 2004: 76-108.
/
〈 | 〉 |